Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131130277> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3131130277 abstract "This paper proposes a novel feature selection method for Sentiment Classification. UCI ML Dataset is selected having a textual review from three domains (IMDB Movie, AMAZON Product, and YELP restaurant). Text pre -processing and feature selection technique is applied to the dataset. A Novel Feature Selection approach using Association Rule Mining is presented in which Sentence is converted in binary form and Apriori Algorithm is applied to reduce the dataset. Four Machine Learning algorithms: Naive Bayes, Support Vector Machine, Random Forest & Logistic Regression to implement experiment. The proposed approach shows an accuracy improvement of 4.2%, 4.9% & 5.9% for IMDB, Amazon & Yelp domain datasets, respectively. Compared with the Genetic Algorithm, Principal Component Analysis, Chi-Square, and Relief based feature selection, the proposed method shows an accuracy improvement of 9.8%, 0.4%, 0.6% & 1.9%, respectively." @default.
- W3131130277 created "2021-03-01" @default.
- W3131130277 creator A5039949088 @default.
- W3131130277 creator A5079889916 @default.
- W3131130277 date "2018-07-13" @default.
- W3131130277 modified "2023-09-24" @default.
- W3131130277 title "Efficient Framework for Sentiment Classification Using Apriori Based Feature Reduction" @default.
- W3131130277 cites W1743243001 @default.
- W3131130277 cites W1808640434 @default.
- W3131130277 cites W2015525779 @default.
- W3131130277 cites W2019759670 @default.
- W3131130277 cites W2032226242 @default.
- W3131130277 cites W2077563243 @default.
- W3131130277 cites W2099813784 @default.
- W3131130277 cites W2143455647 @default.
- W3131130277 cites W2165437209 @default.
- W3131130277 cites W2168505588 @default.
- W3131130277 cites W2251339995 @default.
- W3131130277 cites W2272031392 @default.
- W3131130277 cites W2288153371 @default.
- W3131130277 cites W2553002154 @default.
- W3131130277 cites W2561235059 @default.
- W3131130277 cites W2743243853 @default.
- W3131130277 cites W2766458393 @default.
- W3131130277 cites W2807551980 @default.
- W3131130277 cites W2901880002 @default.
- W3131130277 cites W2913898221 @default.
- W3131130277 cites W2921531144 @default.
- W3131130277 cites W2945995044 @default.
- W3131130277 cites W973036012 @default.
- W3131130277 cites W2950516111 @default.
- W3131130277 cites W3005305696 @default.
- W3131130277 doi "https://doi.org/10.4108/eai.16-2-2021.168715" @default.
- W3131130277 hasPublicationYear "2018" @default.
- W3131130277 type Work @default.
- W3131130277 sameAs 3131130277 @default.
- W3131130277 citedByCount "0" @default.
- W3131130277 crossrefType "journal-article" @default.
- W3131130277 hasAuthorship W3131130277A5039949088 @default.
- W3131130277 hasAuthorship W3131130277A5079889916 @default.
- W3131130277 hasBestOaLocation W31311302771 @default.
- W3131130277 hasConcept C119857082 @default.
- W3131130277 hasConcept C12267149 @default.
- W3131130277 hasConcept C124101348 @default.
- W3131130277 hasConcept C138885662 @default.
- W3131130277 hasConcept C148483581 @default.
- W3131130277 hasConcept C153180895 @default.
- W3131130277 hasConcept C154945302 @default.
- W3131130277 hasConcept C169258074 @default.
- W3131130277 hasConcept C193524817 @default.
- W3131130277 hasConcept C2776401178 @default.
- W3131130277 hasConcept C41008148 @default.
- W3131130277 hasConcept C41895202 @default.
- W3131130277 hasConcept C52001869 @default.
- W3131130277 hasConcept C66402592 @default.
- W3131130277 hasConcept C81917197 @default.
- W3131130277 hasConceptScore W3131130277C119857082 @default.
- W3131130277 hasConceptScore W3131130277C12267149 @default.
- W3131130277 hasConceptScore W3131130277C124101348 @default.
- W3131130277 hasConceptScore W3131130277C138885662 @default.
- W3131130277 hasConceptScore W3131130277C148483581 @default.
- W3131130277 hasConceptScore W3131130277C153180895 @default.
- W3131130277 hasConceptScore W3131130277C154945302 @default.
- W3131130277 hasConceptScore W3131130277C169258074 @default.
- W3131130277 hasConceptScore W3131130277C193524817 @default.
- W3131130277 hasConceptScore W3131130277C2776401178 @default.
- W3131130277 hasConceptScore W3131130277C41008148 @default.
- W3131130277 hasConceptScore W3131130277C41895202 @default.
- W3131130277 hasConceptScore W3131130277C52001869 @default.
- W3131130277 hasConceptScore W3131130277C66402592 @default.
- W3131130277 hasConceptScore W3131130277C81917197 @default.
- W3131130277 hasLocation W31311302771 @default.
- W3131130277 hasOpenAccess W3131130277 @default.
- W3131130277 hasPrimaryLocation W31311302771 @default.
- W3131130277 hasRelatedWork W2011561403 @default.
- W3131130277 hasRelatedWork W2898442926 @default.
- W3131130277 hasRelatedWork W2955257720 @default.
- W3131130277 hasRelatedWork W2969860943 @default.
- W3131130277 hasRelatedWork W2971699827 @default.
- W3131130277 hasRelatedWork W3011222441 @default.
- W3131130277 hasRelatedWork W3210877509 @default.
- W3131130277 hasRelatedWork W3211004416 @default.
- W3131130277 hasRelatedWork W4213444042 @default.
- W3131130277 hasRelatedWork W4283016678 @default.
- W3131130277 isParatext "false" @default.
- W3131130277 isRetracted "false" @default.
- W3131130277 magId "3131130277" @default.
- W3131130277 workType "article" @default.