Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131131608> ?p ?o ?g. }
- W3131131608 endingPage "53" @default.
- W3131131608 startingPage "41" @default.
- W3131131608 abstract "Malaria has been identified to be one of the most common diseases with a great public health problem globally and it is caused by mosquitos’ parasites. This prevails in developing nations where healthcare facilities are not enough for the patients. The technological advancement in medicine has resulted in the collection of huge volumes of data from various sources in different formats. A reliable and early parasite-based diagnosis, identification of symptoms, disease monitoring, and prescription are crucial to decreasing malaria occurrence in Nigeria. Hence, the use of deep and machine learning models is essentials to reduce the effect of malaria-endemic and for better predictive models. Therefore, this paper proposes a framework to predict malaria-endemic in Nigeria. To predict the malaria-endemic well, both environmental and clinical data were used using Kwara State as a case study. The study used a deep learning algorithm as a classifier for the proposed system. Three locations were selected from Irepodun Local Government Areas of Kwara State with 34 months periodic pattern. Each location reacted differently based on environmental factors. The findings indicate that both factors are significant in malaria prediction and transmission. The LSTM algorithm provides an efficient method for detecting situations of widespread malaria." @default.
- W3131131608 created "2021-03-01" @default.
- W3131131608 creator A5076892414 @default.
- W3131131608 creator A5080862956 @default.
- W3131131608 creator A5080923440 @default.
- W3131131608 creator A5085915629 @default.
- W3131131608 date "2021-01-01" @default.
- W3131131608 modified "2023-10-17" @default.
- W3131131608 title "Prediction of Malaria Fever Using Long-Short-Term Memory and Big Data" @default.
- W3131131608 cites W1537316108 @default.
- W3131131608 cites W1598788287 @default.
- W3131131608 cites W1998551863 @default.
- W3131131608 cites W2027540165 @default.
- W3131131608 cites W2040274312 @default.
- W3131131608 cites W2054076956 @default.
- W3131131608 cites W2060647977 @default.
- W3131131608 cites W2074702626 @default.
- W3131131608 cites W2125674401 @default.
- W3131131608 cites W2131715540 @default.
- W3131131608 cites W2166086928 @default.
- W3131131608 cites W2242456062 @default.
- W3131131608 cites W2285118877 @default.
- W3131131608 cites W2304273040 @default.
- W3131131608 cites W2511874347 @default.
- W3131131608 cites W2549346488 @default.
- W3131131608 cites W2557007068 @default.
- W3131131608 cites W2566478608 @default.
- W3131131608 cites W2576903834 @default.
- W3131131608 cites W2594593007 @default.
- W3131131608 cites W2744726626 @default.
- W3131131608 cites W2772777925 @default.
- W3131131608 cites W2774929790 @default.
- W3131131608 cites W2887124611 @default.
- W3131131608 cites W2916458150 @default.
- W3131131608 cites W2919720720 @default.
- W3131131608 cites W2945218322 @default.
- W3131131608 cites W2946355083 @default.
- W3131131608 cites W2949363887 @default.
- W3131131608 cites W2953939943 @default.
- W3131131608 cites W2954080969 @default.
- W3131131608 cites W2954907547 @default.
- W3131131608 cites W2955227195 @default.
- W3131131608 cites W2955793370 @default.
- W3131131608 cites W2963901460 @default.
- W3131131608 cites W2973066167 @default.
- W3131131608 cites W2999199799 @default.
- W3131131608 cites W3002440035 @default.
- W3131131608 cites W3014059898 @default.
- W3131131608 cites W3032989634 @default.
- W3131131608 cites W3041799800 @default.
- W3131131608 cites W3091122297 @default.
- W3131131608 cites W3091132834 @default.
- W3131131608 cites W3091372384 @default.
- W3131131608 cites W3107577028 @default.
- W3131131608 cites W4252048208 @default.
- W3131131608 cites W761095732 @default.
- W3131131608 doi "https://doi.org/10.1007/978-3-030-69143-1_4" @default.
- W3131131608 hasPublicationYear "2021" @default.
- W3131131608 type Work @default.
- W3131131608 sameAs 3131131608 @default.
- W3131131608 citedByCount "14" @default.
- W3131131608 countsByYear W31311316082021 @default.
- W3131131608 countsByYear W31311316082022 @default.
- W3131131608 countsByYear W31311316082023 @default.
- W3131131608 crossrefType "book-chapter" @default.
- W3131131608 hasAuthorship W3131131608A5076892414 @default.
- W3131131608 hasAuthorship W3131131608A5080862956 @default.
- W3131131608 hasAuthorship W3131131608A5080923440 @default.
- W3131131608 hasAuthorship W3131131608A5085915629 @default.
- W3131131608 hasConcept C116834253 @default.
- W3131131608 hasConcept C119857082 @default.
- W3131131608 hasConcept C138816342 @default.
- W3131131608 hasConcept C138885662 @default.
- W3131131608 hasConcept C142724271 @default.
- W3131131608 hasConcept C154945302 @default.
- W3131131608 hasConcept C18903297 @default.
- W3131131608 hasConcept C203014093 @default.
- W3131131608 hasConcept C2426938 @default.
- W3131131608 hasConcept C2778048844 @default.
- W3131131608 hasConcept C2778137410 @default.
- W3131131608 hasConcept C2779134260 @default.
- W3131131608 hasConcept C41008148 @default.
- W3131131608 hasConcept C41895202 @default.
- W3131131608 hasConcept C71924100 @default.
- W3131131608 hasConcept C86803240 @default.
- W3131131608 hasConcept C95623464 @default.
- W3131131608 hasConcept C98274493 @default.
- W3131131608 hasConcept C99454951 @default.
- W3131131608 hasConceptScore W3131131608C116834253 @default.
- W3131131608 hasConceptScore W3131131608C119857082 @default.
- W3131131608 hasConceptScore W3131131608C138816342 @default.
- W3131131608 hasConceptScore W3131131608C138885662 @default.
- W3131131608 hasConceptScore W3131131608C142724271 @default.
- W3131131608 hasConceptScore W3131131608C154945302 @default.
- W3131131608 hasConceptScore W3131131608C18903297 @default.
- W3131131608 hasConceptScore W3131131608C203014093 @default.
- W3131131608 hasConceptScore W3131131608C2426938 @default.
- W3131131608 hasConceptScore W3131131608C2778048844 @default.