Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131200897> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3131200897 abstract "Dynamic scripting languages, like Python, are growing in popularity and increasingly used by non-expert programmers. These languages provide high level abstractions such as safe memory management, dynamic type handling and array bounds checking. The reduction in boilerplate code enables the concise expression of computation compared to statically typed and compiled languages. This improves programmer productivity. Increasingly, scripting languages are used by domain experts to write numerically intensive code in a variety of domains (e.g. Economics, Zoology, Archaeology and Physics). These programs are often used not just for prototyping but also in deployment. However, such managed program execution comes with a significant performance penalty arising from the interpreter having to decode and dispatch based on dynamic type checking.Modern computer systems are increasingly equipped with accelerators such as GPUs. However, the massive speedups that can be achieved by GPU accelerators come at the cost of program complexity. Directly programming a GPU requires a deep understanding of the computational model of the underlying hardware architecture. While the complexity of such devices is abstracted by programming languages specialised for heterogeneous devices such as CUDA and OpenCL, these are dialects of the low-level C systems programming language used primarily by expert programmers.This thesis presents the design and implementation of ALPyNA, a loop parallelisation and GPU code generation framework. A novel staged parallelisation approach is used to aggressively parallelise each execution instance of a loop nest. Loop dependence relationships that cannot be inferred statically are deferred for runtime analysis. At runtime, these dependences are augmented with runtime information obtained by introspection and the loop nest is parallelised. Parallel GPU kernels are customised to the runtime dependence graph, JIT compiled and executed.A systematic analysis of the execution speed of loop nests is performed using 12 standard loop intensive benchmarks. The evaluation is performed on two CPU–GPU machines. One is a server grade machine while the other is a typical desktop. ALPyNA’s GPU kernels achieve orders of magnitude speedup over the baseline interpreter execution time (up to 16435x) and large speedups (up to 179.55x) over JIT compiled CPU code. The varied performance of JIT compiled GPU code motivates the need for a sophisticated cost model to select the device providing the best speedups at runtime for varying domain sizes. This thesis describes a novel lightweight analytical cost model to determine the fastest device to execute a loop nest at runtime. The ALPyNA Cost Model (ACM) adapts to runtime dependence analysis and is parameterised on the hardware characteristics of the underlying target CPU or GPU. The cost model also takes into account the relative rate at which the interpreter is able to supply the GPU with computational work. ACM is re-targetable to other accelerator devices and only requires minimal install time profiling." @default.
- W3131200897 created "2021-03-01" @default.
- W3131200897 creator A5027135948 @default.
- W3131200897 date "2020-01-01" @default.
- W3131200897 modified "2023-09-27" @default.
- W3131200897 title "Opportunistic acceleration of array-centric Python computation in heterogeneous environments" @default.
- W3131200897 hasPublicationYear "2020" @default.
- W3131200897 type Work @default.
- W3131200897 sameAs 3131200897 @default.
- W3131200897 citedByCount "0" @default.
- W3131200897 crossrefType "dissertation" @default.
- W3131200897 hasAuthorship W3131200897A5027135948 @default.
- W3131200897 hasConcept C135257023 @default.
- W3131200897 hasConcept C169590947 @default.
- W3131200897 hasConcept C173608175 @default.
- W3131200897 hasConcept C199360897 @default.
- W3131200897 hasConcept C2778119891 @default.
- W3131200897 hasConcept C2778514511 @default.
- W3131200897 hasConcept C34165917 @default.
- W3131200897 hasConcept C41008148 @default.
- W3131200897 hasConcept C519991488 @default.
- W3131200897 hasConcept C61423126 @default.
- W3131200897 hasConcept C76782552 @default.
- W3131200897 hasConceptScore W3131200897C135257023 @default.
- W3131200897 hasConceptScore W3131200897C169590947 @default.
- W3131200897 hasConceptScore W3131200897C173608175 @default.
- W3131200897 hasConceptScore W3131200897C199360897 @default.
- W3131200897 hasConceptScore W3131200897C2778119891 @default.
- W3131200897 hasConceptScore W3131200897C2778514511 @default.
- W3131200897 hasConceptScore W3131200897C34165917 @default.
- W3131200897 hasConceptScore W3131200897C41008148 @default.
- W3131200897 hasConceptScore W3131200897C519991488 @default.
- W3131200897 hasConceptScore W3131200897C61423126 @default.
- W3131200897 hasConceptScore W3131200897C76782552 @default.
- W3131200897 hasLocation W31312008971 @default.
- W3131200897 hasOpenAccess W3131200897 @default.
- W3131200897 hasPrimaryLocation W31312008971 @default.
- W3131200897 hasRelatedWork W2014325923 @default.
- W3131200897 hasRelatedWork W2041770003 @default.
- W3131200897 hasRelatedWork W2044436861 @default.
- W3131200897 hasRelatedWork W2050259926 @default.
- W3131200897 hasRelatedWork W2053114737 @default.
- W3131200897 hasRelatedWork W2091553595 @default.
- W3131200897 hasRelatedWork W2111083689 @default.
- W3131200897 hasRelatedWork W2146757372 @default.
- W3131200897 hasRelatedWork W2218159933 @default.
- W3131200897 hasRelatedWork W2238700765 @default.
- W3131200897 hasRelatedWork W2257796347 @default.
- W3131200897 hasRelatedWork W2301928242 @default.
- W3131200897 hasRelatedWork W2561741525 @default.
- W3131200897 hasRelatedWork W2581768997 @default.
- W3131200897 hasRelatedWork W2764298 @default.
- W3131200897 hasRelatedWork W2773864704 @default.
- W3131200897 hasRelatedWork W2908683625 @default.
- W3131200897 hasRelatedWork W2979745275 @default.
- W3131200897 hasRelatedWork W3016249299 @default.
- W3131200897 hasRelatedWork W3040995875 @default.
- W3131200897 isParatext "false" @default.
- W3131200897 isRetracted "false" @default.
- W3131200897 magId "3131200897" @default.
- W3131200897 workType "dissertation" @default.