Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131251210> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3131251210 abstract "Abstract Nondestructive evaluation (NDE) of additively manufactured (AM) parts is important for understanding the impacts of various process parameters and qualifying the built part. X-ray computed tomography (XCT) has played a critical role in rapid NDE and characterization of AM parts. However, XCT of metal AM parts can be challenging because of artifacts produced by standard reconstruction algorithms as a result of a confounding effect called “beam hardening.” Beam hardening artifacts complicate the analysis of XCT images and adversely impact the process of detecting defects, such as pores and cracks, which is key to ensuring the quality of the parts being printed. In this work, we propose a novel framework based on using available computer-aided design (CAD) models for parts to be manufactured, accurate XCT simulations, and a deep-neural network to produce high-quality XCT reconstructions from data that are affected by noise and beam hardening. Using extensive experiments with simulated data sets, we demonstrate that our method can significantly improve the reconstruction quality, thereby enabling better detection of defects compared with the state of the art. We also present promising preliminary results of applying the deep networks trained using CAD models to experimental data obtained from XCT of an AM jet-engine turbine blade." @default.
- W3131251210 created "2021-03-01" @default.
- W3131251210 creator A5014047735 @default.
- W3131251210 creator A5037719051 @default.
- W3131251210 creator A5043284595 @default.
- W3131251210 creator A5065370022 @default.
- W3131251210 creator A5072419561 @default.
- W3131251210 creator A5077586593 @default.
- W3131251210 creator A5083513907 @default.
- W3131251210 date "2020-11-16" @default.
- W3131251210 modified "2023-09-30" @default.
- W3131251210 title "Beam Hardening Artifact Reduction in X-Ray CT Reconstruction of 3D Printed Metal Parts Leveraging Deep Learning and CAD Models" @default.
- W3131251210 doi "https://doi.org/10.1115/imece2020-23766" @default.
- W3131251210 hasPublicationYear "2020" @default.
- W3131251210 type Work @default.
- W3131251210 sameAs 3131251210 @default.
- W3131251210 citedByCount "5" @default.
- W3131251210 countsByYear W31312512102021 @default.
- W3131251210 countsByYear W31312512102022 @default.
- W3131251210 countsByYear W31312512102023 @default.
- W3131251210 crossrefType "proceedings-article" @default.
- W3131251210 hasAuthorship W3131251210A5014047735 @default.
- W3131251210 hasAuthorship W3131251210A5037719051 @default.
- W3131251210 hasAuthorship W3131251210A5043284595 @default.
- W3131251210 hasAuthorship W3131251210A5065370022 @default.
- W3131251210 hasAuthorship W3131251210A5072419561 @default.
- W3131251210 hasAuthorship W3131251210A5077586593 @default.
- W3131251210 hasAuthorship W3131251210A5083513907 @default.
- W3131251210 hasBestOaLocation W31312512102 @default.
- W3131251210 hasConcept C108583219 @default.
- W3131251210 hasConcept C111919701 @default.
- W3131251210 hasConcept C127413603 @default.
- W3131251210 hasConcept C154945302 @default.
- W3131251210 hasConcept C159985019 @default.
- W3131251210 hasConcept C192562407 @default.
- W3131251210 hasConcept C194789388 @default.
- W3131251210 hasConcept C199639397 @default.
- W3131251210 hasConcept C20381859 @default.
- W3131251210 hasConcept C2778449969 @default.
- W3131251210 hasConcept C2779010991 @default.
- W3131251210 hasConcept C2779227376 @default.
- W3131251210 hasConcept C41008148 @default.
- W3131251210 hasConcept C44255700 @default.
- W3131251210 hasConcept C50644808 @default.
- W3131251210 hasConcept C78519656 @default.
- W3131251210 hasConcept C98045186 @default.
- W3131251210 hasConceptScore W3131251210C108583219 @default.
- W3131251210 hasConceptScore W3131251210C111919701 @default.
- W3131251210 hasConceptScore W3131251210C127413603 @default.
- W3131251210 hasConceptScore W3131251210C154945302 @default.
- W3131251210 hasConceptScore W3131251210C159985019 @default.
- W3131251210 hasConceptScore W3131251210C192562407 @default.
- W3131251210 hasConceptScore W3131251210C194789388 @default.
- W3131251210 hasConceptScore W3131251210C199639397 @default.
- W3131251210 hasConceptScore W3131251210C20381859 @default.
- W3131251210 hasConceptScore W3131251210C2778449969 @default.
- W3131251210 hasConceptScore W3131251210C2779010991 @default.
- W3131251210 hasConceptScore W3131251210C2779227376 @default.
- W3131251210 hasConceptScore W3131251210C41008148 @default.
- W3131251210 hasConceptScore W3131251210C44255700 @default.
- W3131251210 hasConceptScore W3131251210C50644808 @default.
- W3131251210 hasConceptScore W3131251210C78519656 @default.
- W3131251210 hasConceptScore W3131251210C98045186 @default.
- W3131251210 hasLocation W31312512101 @default.
- W3131251210 hasLocation W31312512102 @default.
- W3131251210 hasOpenAccess W3131251210 @default.
- W3131251210 hasPrimaryLocation W31312512101 @default.
- W3131251210 hasRelatedWork W2003734918 @default.
- W3131251210 hasRelatedWork W2731899572 @default.
- W3131251210 hasRelatedWork W2899084033 @default.
- W3131251210 hasRelatedWork W2939353110 @default.
- W3131251210 hasRelatedWork W3009238340 @default.
- W3131251210 hasRelatedWork W3215138031 @default.
- W3131251210 hasRelatedWork W4312962853 @default.
- W3131251210 hasRelatedWork W4321369474 @default.
- W3131251210 hasRelatedWork W4327774331 @default.
- W3131251210 hasRelatedWork W4360585206 @default.
- W3131251210 isParatext "false" @default.
- W3131251210 isRetracted "false" @default.
- W3131251210 magId "3131251210" @default.
- W3131251210 workType "article" @default.