Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131312219> ?p ?o ?g. }
- W3131312219 endingPage "153387" @default.
- W3131312219 startingPage "153387" @default.
- W3131312219 abstract "Metabolic and genomic characteristics of polyamines (PAs) may be associated with the induction of cold tolerance (CT) responses in plants. Characteristics of PAs encoding genes in chickpea (Cicer arietinum L.) and their function under cold stress (CS) are currently unknown. In this study, the potential role of PAs along with the antioxidative defense systems were assessed in two chickpea genotypes (Sel96th11439, cold-tolerant and ILC533, cold-sensitive) under CS conditions. Six days after exposure to CS, the leaf H2O2 content and electrolyte leakage index increased in the sensitive genotype by 47.7 and 59 %, respectively, while these values decreased or remained unchanged, respectively, in the tolerant genotype. In tolerant genotype, the enhanced activity of superoxide dismutase (SOD) (by 50 %) was accompanied by unchanged activities of ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT) as well as the accumulation of glutathione (GSH) (by 43 %) on the sixth day of CS. Higher levels of putrescine (Put) (322 %), spermidine (Spd) (45 %), spermine (Spm) (69 %) and the highest ratio of Put/(Spd + Spm) were observed in tolerant genotype compared to the sensitive one on the sixth day of CS. Gamma-aminobutyric acid (GABA) accumulation was 74 % higher in tolerant genotype compared to the sensitive one on the sixth day of CS. During CS, the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) increased in tolerant (by 3.02- and 2.46-fold) and sensitive (by 2.51- and 2.8-fold) genotypes, respectively, in comparison with the respective non-stressed plants (normal conditions). The highest activity of DAO and PAO in the tolerant genotype was accompanied by PAs decomposition and a peak in GABA content on the sixth day of CS. The analysis of chickpea genome revealed the presence of five PAs biosynthetic genes, their chromosomal locations, and cis-regulatory elements. A significant increase in transcript levels of arginine decarboxylase (ADC) (24.26- and 7.96-fold), spermidine synthase 1 (SPDS1) (3.03- and 1.53-fold), SPDS2 (5.5- and 1.62-fold) and spermine synthase (SPMS) (3.92- and 1.65-fold) genes was detected in tolerant and sensitive genotypes, respectively, whereas the expression of ornithine decarboxylase (ODC) genes decreased significantly under CS conditions in both genotypes. Leaf chlorophyll and carotenoid contents exhibited declining trends in the sensitive genotype, while these photosynthetic pigments were stable in the tolerant genotype due to the superior performance of defensive processes under CS conditions. Overall, these results suggested the specific roles of putative PAs genes and PAs metabolism in development of effective CT responses in chickpea." @default.
- W3131312219 created "2021-03-01" @default.
- W3131312219 creator A5013886822 @default.
- W3131312219 creator A5023916826 @default.
- W3131312219 creator A5031581182 @default.
- W3131312219 creator A5045125028 @default.
- W3131312219 creator A5045716859 @default.
- W3131312219 creator A5050106428 @default.
- W3131312219 creator A5087943263 @default.
- W3131312219 date "2021-03-01" @default.
- W3131312219 modified "2023-10-16" @default.
- W3131312219 title "Effect of cold stress on polyamine metabolism and antioxidant responses in chickpea" @default.
- W3131312219 cites W1523027336 @default.
- W3131312219 cites W1557650637 @default.
- W3131312219 cites W1914610732 @default.
- W3131312219 cites W1966656860 @default.
- W3131312219 cites W1975890951 @default.
- W3131312219 cites W1988509658 @default.
- W3131312219 cites W1997771682 @default.
- W3131312219 cites W1999857820 @default.
- W3131312219 cites W2000384478 @default.
- W3131312219 cites W2001489822 @default.
- W3131312219 cites W2002790003 @default.
- W3131312219 cites W2004485452 @default.
- W3131312219 cites W2008888074 @default.
- W3131312219 cites W2011352939 @default.
- W3131312219 cites W2011505885 @default.
- W3131312219 cites W2012645913 @default.
- W3131312219 cites W2017357047 @default.
- W3131312219 cites W2017384226 @default.
- W3131312219 cites W2019241672 @default.
- W3131312219 cites W2020134788 @default.
- W3131312219 cites W2022726070 @default.
- W3131312219 cites W2023430078 @default.
- W3131312219 cites W2033452065 @default.
- W3131312219 cites W2038485560 @default.
- W3131312219 cites W2039188848 @default.
- W3131312219 cites W2041597317 @default.
- W3131312219 cites W2044266876 @default.
- W3131312219 cites W2048332866 @default.
- W3131312219 cites W2048441518 @default.
- W3131312219 cites W2049771854 @default.
- W3131312219 cites W2051245609 @default.
- W3131312219 cites W2059330134 @default.
- W3131312219 cites W2066378727 @default.
- W3131312219 cites W2066517545 @default.
- W3131312219 cites W2066672943 @default.
- W3131312219 cites W2070549535 @default.
- W3131312219 cites W2071508270 @default.
- W3131312219 cites W2071851347 @default.
- W3131312219 cites W2072670141 @default.
- W3131312219 cites W2077361793 @default.
- W3131312219 cites W2077657618 @default.
- W3131312219 cites W2080478461 @default.
- W3131312219 cites W2081268558 @default.
- W3131312219 cites W2087679323 @default.
- W3131312219 cites W2089303926 @default.
- W3131312219 cites W2089440273 @default.
- W3131312219 cites W2098234703 @default.
- W3131312219 cites W2099863849 @default.
- W3131312219 cites W2104480923 @default.
- W3131312219 cites W2108244474 @default.
- W3131312219 cites W2126386203 @default.
- W3131312219 cites W2141379053 @default.
- W3131312219 cites W2152605624 @default.
- W3131312219 cites W2152854986 @default.
- W3131312219 cites W2178565624 @default.
- W3131312219 cites W2226793285 @default.
- W3131312219 cites W2291091629 @default.
- W3131312219 cites W2293771169 @default.
- W3131312219 cites W2465114136 @default.
- W3131312219 cites W2509029937 @default.
- W3131312219 cites W2550443258 @default.
- W3131312219 cites W2569541347 @default.
- W3131312219 cites W2577566146 @default.
- W3131312219 cites W2585821521 @default.
- W3131312219 cites W2586725990 @default.
- W3131312219 cites W2748253745 @default.
- W3131312219 cites W2768832971 @default.
- W3131312219 cites W2777976752 @default.
- W3131312219 cites W2789995078 @default.
- W3131312219 cites W2795337696 @default.
- W3131312219 cites W2800311829 @default.
- W3131312219 cites W2803148460 @default.
- W3131312219 cites W2892870427 @default.
- W3131312219 cites W2896541023 @default.
- W3131312219 cites W2914135723 @default.
- W3131312219 cites W2972564000 @default.
- W3131312219 cites W2982594919 @default.
- W3131312219 cites W2983083007 @default.
- W3131312219 cites W3002281986 @default.
- W3131312219 cites W3080192524 @default.
- W3131312219 cites W4231091913 @default.
- W3131312219 cites W4293247451 @default.
- W3131312219 cites W4376043742 @default.
- W3131312219 cites W2733244575 @default.
- W3131312219 doi "https://doi.org/10.1016/j.jplph.2021.153387" @default.
- W3131312219 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33636556" @default.