Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131330407> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3131330407 endingPage "1178" @default.
- W3131330407 startingPage "1163" @default.
- W3131330407 abstract "Purpose In the previous study of financial distress prediction, deep learning techniques performed better than traditional techniques over time-series data. This study investigates the performance of deep learning models: recurrent neural network, long short-term memory and gated recurrent unit for the financial distress prediction among the Malaysian public listed corporation over the time-series data. This study also compares the performance of logistic regression, support vector machine, neural network, decision tree and the deep learning models on single-year data. Design/methodology/approach The data used are the financial data of public listed companies that been classified as PN17 status (distress) and non-PN17 (not distress) in Malaysia. This study was conducted using machine learning library of Python programming language. Findings The findings indicate that all deep learning models used for this study achieved 90% accuracy and above with long short-term memory (LSTM) and gated recurrent unit (GRU) getting 93% accuracy. In addition, deep learning models consistently have good performance compared to the other models over single-year data. The results show LSTM and GRU getting 90% and recurrent neural network (RNN) 88% accuracy. The results also show that LSTM and GRU get better precision and recall compared to RNN. The findings of this study show that the deep learning approach will lead to better performance in financial distress prediction studies. To be added, time-series data should be highlighted in any financial distress prediction studies since it has a big impact on credit risk assessment. Research limitations/implications The first limitation of this study is the hyperparameter tuning only applied for deep learning models. Secondly, the time-series data are only used for deep learning models since the other models optimally fit on single-year data. Practical implications This study proposes recommendations that deep learning is a new approach that will lead to better performance in financial distress prediction studies. Besides that, time-series data should be highlighted in any financial distress prediction studies since the data have a big impact on the assessment of credit risk. Originality/value To the best of authors' knowledge, this article is the first study that uses the gated recurrent unit in financial distress prediction studies based on time-series data for Malaysian public listed companies. The findings of this study can help financial institutions/investors to find a better and accurate approach for credit risk assessment." @default.
- W3131330407 created "2021-03-01" @default.
- W3131330407 creator A5041190313 @default.
- W3131330407 creator A5053967667 @default.
- W3131330407 creator A5090945370 @default.
- W3131330407 date "2021-02-19" @default.
- W3131330407 modified "2023-09-24" @default.
- W3131330407 title "Corporation financial distress prediction with deep learning: analysis of public listed companies in Malaysia" @default.
- W3131330407 cites W1175774059 @default.
- W3131330407 cites W1650531274 @default.
- W3131330407 cites W1967681415 @default.
- W3131330407 cites W2004473119 @default.
- W3131330407 cites W2021451640 @default.
- W3131330407 cites W2046792933 @default.
- W3131330407 cites W2069762301 @default.
- W3131330407 cites W2071193822 @default.
- W3131330407 cites W2083862258 @default.
- W3131330407 cites W2118023920 @default.
- W3131330407 cites W2206599746 @default.
- W3131330407 cites W2235716330 @default.
- W3131330407 cites W2293081571 @default.
- W3131330407 cites W2319270064 @default.
- W3131330407 cites W2355793440 @default.
- W3131330407 cites W2510046892 @default.
- W3131330407 cites W2516066574 @default.
- W3131330407 cites W2539116812 @default.
- W3131330407 cites W2548433855 @default.
- W3131330407 cites W2562923621 @default.
- W3131330407 cites W2567086669 @default.
- W3131330407 cites W2571622694 @default.
- W3131330407 cites W2583148087 @default.
- W3131330407 cites W2599925391 @default.
- W3131330407 cites W2606916050 @default.
- W3131330407 cites W2733300139 @default.
- W3131330407 cites W2735337297 @default.
- W3131330407 cites W2736233072 @default.
- W3131330407 cites W2897596136 @default.
- W3131330407 cites W2964118901 @default.
- W3131330407 cites W2964199361 @default.
- W3131330407 cites W3105282616 @default.
- W3131330407 cites W4246600240 @default.
- W3131330407 cites W4302547790 @default.
- W3131330407 doi "https://doi.org/10.1108/bpmj-06-2020-0273" @default.
- W3131330407 hasPublicationYear "2021" @default.
- W3131330407 type Work @default.
- W3131330407 sameAs 3131330407 @default.
- W3131330407 citedByCount "4" @default.
- W3131330407 countsByYear W31313304072022 @default.
- W3131330407 countsByYear W31313304072023 @default.
- W3131330407 crossrefType "journal-article" @default.
- W3131330407 hasAuthorship W3131330407A5041190313 @default.
- W3131330407 hasAuthorship W3131330407A5053967667 @default.
- W3131330407 hasAuthorship W3131330407A5090945370 @default.
- W3131330407 hasConcept C10138342 @default.
- W3131330407 hasConcept C108583219 @default.
- W3131330407 hasConcept C119857082 @default.
- W3131330407 hasConcept C144133560 @default.
- W3131330407 hasConcept C147168706 @default.
- W3131330407 hasConcept C154945302 @default.
- W3131330407 hasConcept C169258074 @default.
- W3131330407 hasConcept C2984760201 @default.
- W3131330407 hasConcept C41008148 @default.
- W3131330407 hasConcept C50644808 @default.
- W3131330407 hasConcept C73283319 @default.
- W3131330407 hasConceptScore W3131330407C10138342 @default.
- W3131330407 hasConceptScore W3131330407C108583219 @default.
- W3131330407 hasConceptScore W3131330407C119857082 @default.
- W3131330407 hasConceptScore W3131330407C144133560 @default.
- W3131330407 hasConceptScore W3131330407C147168706 @default.
- W3131330407 hasConceptScore W3131330407C154945302 @default.
- W3131330407 hasConceptScore W3131330407C169258074 @default.
- W3131330407 hasConceptScore W3131330407C2984760201 @default.
- W3131330407 hasConceptScore W3131330407C41008148 @default.
- W3131330407 hasConceptScore W3131330407C50644808 @default.
- W3131330407 hasConceptScore W3131330407C73283319 @default.
- W3131330407 hasIssue "4" @default.
- W3131330407 hasLocation W31313304071 @default.
- W3131330407 hasOpenAccess W3131330407 @default.
- W3131330407 hasPrimaryLocation W31313304071 @default.
- W3131330407 hasRelatedWork W2793022090 @default.
- W3131330407 hasRelatedWork W2968586400 @default.
- W3131330407 hasRelatedWork W3211546796 @default.
- W3131330407 hasRelatedWork W4223564025 @default.
- W3131330407 hasRelatedWork W4226246648 @default.
- W3131330407 hasRelatedWork W4281616679 @default.
- W3131330407 hasRelatedWork W4281986673 @default.
- W3131330407 hasRelatedWork W4298168912 @default.
- W3131330407 hasRelatedWork W4311106074 @default.
- W3131330407 hasRelatedWork W4322727400 @default.
- W3131330407 hasVolume "27" @default.
- W3131330407 isParatext "false" @default.
- W3131330407 isRetracted "false" @default.
- W3131330407 magId "3131330407" @default.
- W3131330407 workType "article" @default.