Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131385077> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3131385077 abstract "Dengue is an arboviral disease caused by the Aedes mosquito-borne dengue viruses (DENVs). The World Health organization (WHO) reports an annual incidence of around 100-400 million infections in 2019 which is the largest number of dengue cases ever reported globally and prompted WHO to declare the virus as the world's top 10 public health threats. It can be turned into life-threatening dengue hemorrhagic fever which further evolves into dengue shock syndrome. Indispensable useful tools that precisely distinguish dengue and its subtypes in the early stage of disease progression are essential to convenient well-timed supportive care and therapy. In recent years, Bangladesh has seen a hike in the dengue outbreak and 101,000 cases were reported to the WHO in 2019. Such an outbreak can create havoc in society. Because of the lack of vaccine and antiviral drugs, a timely prediction of the dengue outbreak is, therefore, crucial to reducing the casualty. In this paper, we proposed a new machine learning approach to predict dengue fever. A patient dataset, containing information of the patient's diagnosis report, medical history, and symptoms, was constructed through collecting real-time raw data samples of various types of dengue fever patients from the Medicine Department of Chittagong Medical College Hospital and Dhaka Medical College Hospital, Bangladesh. The whole dataset was split into 70:30 ratios using 70% for training and 30% for test purposes. We applied machine learning algorithms, namely decision tree (DT) and random forest (RF) in the proposed classification model. Finally, the decision tree resulted in an average accuracy of 79%, which is higher than the random forest." @default.
- W3131385077 created "2021-03-01" @default.
- W3131385077 creator A5043919282 @default.
- W3131385077 creator A5051878345 @default.
- W3131385077 creator A5071256439 @default.
- W3131385077 creator A5071387760 @default.
- W3131385077 creator A5076219151 @default.
- W3131385077 creator A5078893193 @default.
- W3131385077 date "2020-12-01" @default.
- W3131385077 modified "2023-10-18" @default.
- W3131385077 title "Dengue Prediction using Machine Learning Algorithms" @default.
- W3131385077 cites W2127840002 @default.
- W3131385077 cites W2394668164 @default.
- W3131385077 cites W2897219503 @default.
- W3131385077 cites W2914590008 @default.
- W3131385077 cites W2947192307 @default.
- W3131385077 cites W2967836450 @default.
- W3131385077 cites W2990528574 @default.
- W3131385077 cites W2999103859 @default.
- W3131385077 cites W2999202245 @default.
- W3131385077 cites W3000176417 @default.
- W3131385077 cites W3011207195 @default.
- W3131385077 cites W3012375008 @default.
- W3131385077 cites W3012643114 @default.
- W3131385077 cites W3012789274 @default.
- W3131385077 cites W3014928839 @default.
- W3131385077 cites W3034857299 @default.
- W3131385077 cites W3045229347 @default.
- W3131385077 cites W3081680075 @default.
- W3131385077 cites W3082351072 @default.
- W3131385077 cites W3091852949 @default.
- W3131385077 cites W3092531413 @default.
- W3131385077 cites W3107567406 @default.
- W3131385077 doi "https://doi.org/10.1109/r10-htc49770.2020.9357035" @default.
- W3131385077 hasPublicationYear "2020" @default.
- W3131385077 type Work @default.
- W3131385077 sameAs 3131385077 @default.
- W3131385077 citedByCount "8" @default.
- W3131385077 countsByYear W31313850772021 @default.
- W3131385077 countsByYear W31313850772022 @default.
- W3131385077 countsByYear W31313850772023 @default.
- W3131385077 crossrefType "proceedings-article" @default.
- W3131385077 hasAuthorship W3131385077A5043919282 @default.
- W3131385077 hasAuthorship W3131385077A5051878345 @default.
- W3131385077 hasAuthorship W3131385077A5071256439 @default.
- W3131385077 hasAuthorship W3131385077A5071387760 @default.
- W3131385077 hasAuthorship W3131385077A5076219151 @default.
- W3131385077 hasAuthorship W3131385077A5078893193 @default.
- W3131385077 hasConcept C11413529 @default.
- W3131385077 hasConcept C116675565 @default.
- W3131385077 hasConcept C119857082 @default.
- W3131385077 hasConcept C126322002 @default.
- W3131385077 hasConcept C154945302 @default.
- W3131385077 hasConcept C159047783 @default.
- W3131385077 hasConcept C169258074 @default.
- W3131385077 hasConcept C2524010 @default.
- W3131385077 hasConcept C2779134260 @default.
- W3131385077 hasConcept C2779635636 @default.
- W3131385077 hasConcept C33923547 @default.
- W3131385077 hasConcept C41008148 @default.
- W3131385077 hasConcept C533803919 @default.
- W3131385077 hasConcept C545542383 @default.
- W3131385077 hasConcept C61511704 @default.
- W3131385077 hasConcept C71924100 @default.
- W3131385077 hasConcept C84525736 @default.
- W3131385077 hasConceptScore W3131385077C11413529 @default.
- W3131385077 hasConceptScore W3131385077C116675565 @default.
- W3131385077 hasConceptScore W3131385077C119857082 @default.
- W3131385077 hasConceptScore W3131385077C126322002 @default.
- W3131385077 hasConceptScore W3131385077C154945302 @default.
- W3131385077 hasConceptScore W3131385077C159047783 @default.
- W3131385077 hasConceptScore W3131385077C169258074 @default.
- W3131385077 hasConceptScore W3131385077C2524010 @default.
- W3131385077 hasConceptScore W3131385077C2779134260 @default.
- W3131385077 hasConceptScore W3131385077C2779635636 @default.
- W3131385077 hasConceptScore W3131385077C33923547 @default.
- W3131385077 hasConceptScore W3131385077C41008148 @default.
- W3131385077 hasConceptScore W3131385077C533803919 @default.
- W3131385077 hasConceptScore W3131385077C545542383 @default.
- W3131385077 hasConceptScore W3131385077C61511704 @default.
- W3131385077 hasConceptScore W3131385077C71924100 @default.
- W3131385077 hasConceptScore W3131385077C84525736 @default.
- W3131385077 hasLocation W31313850771 @default.
- W3131385077 hasOpenAccess W3131385077 @default.
- W3131385077 hasPrimaryLocation W31313850771 @default.
- W3131385077 hasRelatedWork W1974067083 @default.
- W3131385077 hasRelatedWork W2011714939 @default.
- W3131385077 hasRelatedWork W2342183947 @default.
- W3131385077 hasRelatedWork W2365816123 @default.
- W3131385077 hasRelatedWork W3046434830 @default.
- W3131385077 hasRelatedWork W4280583453 @default.
- W3131385077 hasRelatedWork W4285225238 @default.
- W3131385077 hasRelatedWork W4308191010 @default.
- W3131385077 hasRelatedWork W4318350883 @default.
- W3131385077 hasRelatedWork W4385711006 @default.
- W3131385077 isParatext "false" @default.
- W3131385077 isRetracted "false" @default.
- W3131385077 magId "3131385077" @default.
- W3131385077 workType "article" @default.