Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131448908> ?p ?o ?g. }
- W3131448908 abstract "Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infected person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper." @default.
- W3131448908 created "2021-03-01" @default.
- W3131448908 creator A5026776669 @default.
- W3131448908 creator A5033177104 @default.
- W3131448908 creator A5054360301 @default.
- W3131448908 creator A5057260089 @default.
- W3131448908 creator A5073869382 @default.
- W3131448908 creator A5080518580 @default.
- W3131448908 creator A5089170562 @default.
- W3131448908 date "2021-02-15" @default.
- W3131448908 modified "2023-09-25" @default.
- W3131448908 title "Modeling and tracking Covid-19 cases using Big Data analytics on HPCC system platform" @default.
- W3131448908 cites W1969198379 @default.
- W3131448908 cites W2061820396 @default.
- W3131448908 cites W2070645266 @default.
- W3131448908 cites W2085600761 @default.
- W3131448908 cites W2140540364 @default.
- W3131448908 cites W2152152036 @default.
- W3131448908 cites W2165483146 @default.
- W3131448908 cites W2171577813 @default.
- W3131448908 cites W2520071358 @default.
- W3131448908 cites W3008028633 @default.
- W3131448908 cites W3011305849 @default.
- W3131448908 cites W3011445852 @default.
- W3131448908 cites W3012690896 @default.
- W3131448908 cites W4302331569 @default.
- W3131448908 doi "https://doi.org/10.1186/s40537-021-00423-z" @default.
- W3131448908 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7883950" @default.
- W3131448908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33614394" @default.
- W3131448908 hasPublicationYear "2021" @default.
- W3131448908 type Work @default.
- W3131448908 sameAs 3131448908 @default.
- W3131448908 citedByCount "16" @default.
- W3131448908 countsByYear W31314489082021 @default.
- W3131448908 countsByYear W31314489082022 @default.
- W3131448908 countsByYear W31314489082023 @default.
- W3131448908 crossrefType "journal-article" @default.
- W3131448908 hasAuthorship W3131448908A5026776669 @default.
- W3131448908 hasAuthorship W3131448908A5033177104 @default.
- W3131448908 hasAuthorship W3131448908A5054360301 @default.
- W3131448908 hasAuthorship W3131448908A5057260089 @default.
- W3131448908 hasAuthorship W3131448908A5073869382 @default.
- W3131448908 hasAuthorship W3131448908A5080518580 @default.
- W3131448908 hasAuthorship W3131448908A5089170562 @default.
- W3131448908 hasBestOaLocation W31314489081 @default.
- W3131448908 hasConcept C118487528 @default.
- W3131448908 hasConcept C124101348 @default.
- W3131448908 hasConcept C142724271 @default.
- W3131448908 hasConcept C144024400 @default.
- W3131448908 hasConcept C17744445 @default.
- W3131448908 hasConcept C191935318 @default.
- W3131448908 hasConcept C19417346 @default.
- W3131448908 hasConcept C199539241 @default.
- W3131448908 hasConcept C2522767166 @default.
- W3131448908 hasConcept C2775899829 @default.
- W3131448908 hasConcept C2775936607 @default.
- W3131448908 hasConcept C2779134260 @default.
- W3131448908 hasConcept C2908647359 @default.
- W3131448908 hasConcept C3008058167 @default.
- W3131448908 hasConcept C41008148 @default.
- W3131448908 hasConcept C524204448 @default.
- W3131448908 hasConcept C71924100 @default.
- W3131448908 hasConcept C75684735 @default.
- W3131448908 hasConcept C79158427 @default.
- W3131448908 hasConcept C89623803 @default.
- W3131448908 hasConcept C99454951 @default.
- W3131448908 hasConceptScore W3131448908C118487528 @default.
- W3131448908 hasConceptScore W3131448908C124101348 @default.
- W3131448908 hasConceptScore W3131448908C142724271 @default.
- W3131448908 hasConceptScore W3131448908C144024400 @default.
- W3131448908 hasConceptScore W3131448908C17744445 @default.
- W3131448908 hasConceptScore W3131448908C191935318 @default.
- W3131448908 hasConceptScore W3131448908C19417346 @default.
- W3131448908 hasConceptScore W3131448908C199539241 @default.
- W3131448908 hasConceptScore W3131448908C2522767166 @default.
- W3131448908 hasConceptScore W3131448908C2775899829 @default.
- W3131448908 hasConceptScore W3131448908C2775936607 @default.
- W3131448908 hasConceptScore W3131448908C2779134260 @default.
- W3131448908 hasConceptScore W3131448908C2908647359 @default.
- W3131448908 hasConceptScore W3131448908C3008058167 @default.
- W3131448908 hasConceptScore W3131448908C41008148 @default.
- W3131448908 hasConceptScore W3131448908C524204448 @default.
- W3131448908 hasConceptScore W3131448908C71924100 @default.
- W3131448908 hasConceptScore W3131448908C75684735 @default.
- W3131448908 hasConceptScore W3131448908C79158427 @default.
- W3131448908 hasConceptScore W3131448908C89623803 @default.
- W3131448908 hasConceptScore W3131448908C99454951 @default.
- W3131448908 hasFunder F4320306076 @default.
- W3131448908 hasIssue "1" @default.
- W3131448908 hasLocation W31314489081 @default.
- W3131448908 hasLocation W31314489082 @default.
- W3131448908 hasLocation W31314489083 @default.
- W3131448908 hasOpenAccess W3131448908 @default.
- W3131448908 hasPrimaryLocation W31314489081 @default.
- W3131448908 hasRelatedWork W2337265393 @default.
- W3131448908 hasRelatedWork W2509056639 @default.
- W3131448908 hasRelatedWork W2739436898 @default.
- W3131448908 hasRelatedWork W2777139086 @default.
- W3131448908 hasRelatedWork W2790702400 @default.
- W3131448908 hasRelatedWork W2793151347 @default.