Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131478162> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3131478162 abstract "Abstract Understanding the activity of the mammalian brain requires an integrative knowledge of circuits at distinct scales, ranging from ion channel gating to circuit connectomics. To understand how multiple parameters contribute synergistically to circuit behavior, neuronal computational models are regularly employed. However, traditional models containing anatomically and biophysically realistic neurons are computationally demanding even when scaled to model local circuits. To overcome this limitation, we trained several artificial neural net (ANN) architectures to model the activity of realistic, multicompartmental neurons. We identified a single ANN that accurately predicted both subthreshold and action potential firing and correctly generalized its responses to previously unobserved synaptic input. When scaled, processing times were orders of magnitude faster compared with traditional approaches, allowing for rapid parameter-space mapping in a circuit model of Rett syndrome. Thus, we present a novel ANN approach that allows for rapid, detailed network experiments using inexpensive, readily available computational resources." @default.
- W3131478162 created "2021-03-01" @default.
- W3131478162 creator A5054985595 @default.
- W3131478162 creator A5074610992 @default.
- W3131478162 creator A5076575040 @default.
- W3131478162 date "2021-02-23" @default.
- W3131478162 modified "2023-09-23" @default.
- W3131478162 title "Ultrafast large-scale simulations of biophysically realistic neurons using deep learning" @default.
- W3131478162 cites W2059194600 @default.
- W3131478162 cites W2073415089 @default.
- W3131478162 cites W2075779454 @default.
- W3131478162 cites W2104107506 @default.
- W3131478162 cites W2124503759 @default.
- W3131478162 cites W2427774661 @default.
- W3131478162 cites W2514501671 @default.
- W3131478162 cites W2755649247 @default.
- W3131478162 cites W2786173530 @default.
- W3131478162 cites W2890385767 @default.
- W3131478162 cites W3121856431 @default.
- W3131478162 cites W3155501465 @default.
- W3131478162 cites W3210095783 @default.
- W3131478162 cites W4214775604 @default.
- W3131478162 cites W4231125287 @default.
- W3131478162 cites W4251169672 @default.
- W3131478162 cites W4255949318 @default.
- W3131478162 doi "https://doi.org/10.1101/2021.02.22.432356" @default.
- W3131478162 hasPublicationYear "2021" @default.
- W3131478162 type Work @default.
- W3131478162 sameAs 3131478162 @default.
- W3131478162 citedByCount "0" @default.
- W3131478162 crossrefType "posted-content" @default.
- W3131478162 hasAuthorship W3131478162A5054985595 @default.
- W3131478162 hasAuthorship W3131478162A5074610992 @default.
- W3131478162 hasAuthorship W3131478162A5076575040 @default.
- W3131478162 hasBestOaLocation W31314781621 @default.
- W3131478162 hasConcept C118403218 @default.
- W3131478162 hasConcept C119857082 @default.
- W3131478162 hasConcept C151927369 @default.
- W3131478162 hasConcept C15286952 @default.
- W3131478162 hasConcept C154945302 @default.
- W3131478162 hasConcept C169760540 @default.
- W3131478162 hasConcept C2779097318 @default.
- W3131478162 hasConcept C3018011982 @default.
- W3131478162 hasConcept C41008148 @default.
- W3131478162 hasConcept C45715564 @default.
- W3131478162 hasConcept C50644808 @default.
- W3131478162 hasConcept C86803240 @default.
- W3131478162 hasConceptScore W3131478162C118403218 @default.
- W3131478162 hasConceptScore W3131478162C119857082 @default.
- W3131478162 hasConceptScore W3131478162C151927369 @default.
- W3131478162 hasConceptScore W3131478162C15286952 @default.
- W3131478162 hasConceptScore W3131478162C154945302 @default.
- W3131478162 hasConceptScore W3131478162C169760540 @default.
- W3131478162 hasConceptScore W3131478162C2779097318 @default.
- W3131478162 hasConceptScore W3131478162C3018011982 @default.
- W3131478162 hasConceptScore W3131478162C41008148 @default.
- W3131478162 hasConceptScore W3131478162C45715564 @default.
- W3131478162 hasConceptScore W3131478162C50644808 @default.
- W3131478162 hasConceptScore W3131478162C86803240 @default.
- W3131478162 hasLocation W31314781621 @default.
- W3131478162 hasLocation W31314781622 @default.
- W3131478162 hasOpenAccess W3131478162 @default.
- W3131478162 hasPrimaryLocation W31314781621 @default.
- W3131478162 hasRelatedWork W2289514760 @default.
- W3131478162 hasRelatedWork W2470756147 @default.
- W3131478162 hasRelatedWork W2571720454 @default.
- W3131478162 hasRelatedWork W2902570306 @default.
- W3131478162 hasRelatedWork W2952771940 @default.
- W3131478162 hasRelatedWork W3004213178 @default.
- W3131478162 hasRelatedWork W3103190104 @default.
- W3131478162 hasRelatedWork W3190634970 @default.
- W3131478162 hasRelatedWork W3215758103 @default.
- W3131478162 hasRelatedWork W4382199265 @default.
- W3131478162 isParatext "false" @default.
- W3131478162 isRetracted "false" @default.
- W3131478162 magId "3131478162" @default.
- W3131478162 workType "article" @default.