Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131508317> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3131508317 abstract "Accurate prediction of physical properties is critical for discovering and designing novel materials. Machine learning technologies have attracted significant attention in the materials science community for their potential for large-scale screening. Graph Convolution Neural Network (GCNN) is one of the most successful machine learning methods because of its flexibility and effectiveness in describing 3D structural data. Most existing GCNN models focus on the topological structure but overly simplify the three-dimensional geometric structure. However, in materials science, the 3D-spatial distribution of atoms is crucial for determining the atomic states and interatomic forces. This paper proposes an adaptive GCNN with a novel convolution mechanism that simultaneously models atomic interactions among all neighbor atoms in three-dimensional space. We apply the proposed model to two distinctly challenging problems on predicting material properties. The first is Henry's constant for gas adsorption in Metal-Organic Frameworks (MOFs), which is notoriously difficult because of its high sensitivity to atomic configurations. The second is the ion conductivity in solid-state crystal materials, which is difficult because of few labeled data available for training. The new model outperforms existing graph-based models on both data sets, suggesting that the critical three-dimensional geometric information is indeed captured." @default.
- W3131508317 created "2021-03-01" @default.
- W3131508317 creator A5010101372 @default.
- W3131508317 creator A5040828640 @default.
- W3131508317 creator A5048701309 @default.
- W3131508317 creator A5056218552 @default.
- W3131508317 date "2021-02-16" @default.
- W3131508317 modified "2023-09-23" @default.
- W3131508317 title "Predicting Material Properties Using a 3D Graph Neural Network with Invariant Local Descriptors" @default.
- W3131508317 cites W1669302834 @default.
- W3131508317 cites W1969733464 @default.
- W3131508317 cites W1992985800 @default.
- W3131508317 cites W2005076963 @default.
- W3131508317 cites W2006441761 @default.
- W3131508317 cites W2023972500 @default.
- W3131508317 cites W2045688651 @default.
- W3131508317 cites W2055363965 @default.
- W3131508317 cites W2124386111 @default.
- W3131508317 cites W2141704677 @default.
- W3131508317 cites W2278970271 @default.
- W3131508317 cites W2606780347 @default.
- W3131508317 cites W2742079690 @default.
- W3131508317 cites W2742835787 @default.
- W3131508317 cites W2766856748 @default.
- W3131508317 cites W2778051509 @default.
- W3131508317 cites W2810731239 @default.
- W3131508317 cites W2890641732 @default.
- W3131508317 cites W2901003004 @default.
- W3131508317 cites W2901443497 @default.
- W3131508317 cites W2949015218 @default.
- W3131508317 cites W2949095042 @default.
- W3131508317 cites W2972244278 @default.
- W3131508317 cites W604015344 @default.
- W3131508317 doi "https://doi.org/10.48550/arxiv.2102.11023" @default.
- W3131508317 hasPublicationYear "2021" @default.
- W3131508317 type Work @default.
- W3131508317 sameAs 3131508317 @default.
- W3131508317 citedByCount "0" @default.
- W3131508317 crossrefType "posted-content" @default.
- W3131508317 hasAuthorship W3131508317A5010101372 @default.
- W3131508317 hasAuthorship W3131508317A5040828640 @default.
- W3131508317 hasAuthorship W3131508317A5048701309 @default.
- W3131508317 hasAuthorship W3131508317A5056218552 @default.
- W3131508317 hasBestOaLocation W31315083171 @default.
- W3131508317 hasConcept C132525143 @default.
- W3131508317 hasConcept C154945302 @default.
- W3131508317 hasConcept C190470478 @default.
- W3131508317 hasConcept C33923547 @default.
- W3131508317 hasConcept C37914503 @default.
- W3131508317 hasConcept C41008148 @default.
- W3131508317 hasConcept C45347329 @default.
- W3131508317 hasConcept C50644808 @default.
- W3131508317 hasConcept C80444323 @default.
- W3131508317 hasConcept C81363708 @default.
- W3131508317 hasConceptScore W3131508317C132525143 @default.
- W3131508317 hasConceptScore W3131508317C154945302 @default.
- W3131508317 hasConceptScore W3131508317C190470478 @default.
- W3131508317 hasConceptScore W3131508317C33923547 @default.
- W3131508317 hasConceptScore W3131508317C37914503 @default.
- W3131508317 hasConceptScore W3131508317C41008148 @default.
- W3131508317 hasConceptScore W3131508317C45347329 @default.
- W3131508317 hasConceptScore W3131508317C50644808 @default.
- W3131508317 hasConceptScore W3131508317C80444323 @default.
- W3131508317 hasConceptScore W3131508317C81363708 @default.
- W3131508317 hasLocation W31315083171 @default.
- W3131508317 hasOpenAccess W3131508317 @default.
- W3131508317 hasPrimaryLocation W31315083171 @default.
- W3131508317 hasRelatedWork W2529764055 @default.
- W3131508317 hasRelatedWork W2755240195 @default.
- W3131508317 hasRelatedWork W2766634277 @default.
- W3131508317 hasRelatedWork W2810384904 @default.
- W3131508317 hasRelatedWork W2897359454 @default.
- W3131508317 hasRelatedWork W2898938095 @default.
- W3131508317 hasRelatedWork W2980363492 @default.
- W3131508317 hasRelatedWork W3129634582 @default.
- W3131508317 hasRelatedWork W3165266428 @default.
- W3131508317 hasRelatedWork W4312417841 @default.
- W3131508317 isParatext "false" @default.
- W3131508317 isRetracted "false" @default.
- W3131508317 magId "3131508317" @default.
- W3131508317 workType "article" @default.