Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131645275> ?p ?o ?g. }
- W3131645275 endingPage "4813" @default.
- W3131645275 startingPage "4781" @default.
- W3131645275 abstract "Abstract This review/research paper deals with the reduction of nonlinear partial differential equations governing the dynamic behavior of structural mechanical members with emphasis put on theoretical aspects of the applied methods and signal processing. Owing to the rapid development of technology, materials science and in particular micro/nano mechanical systems, there is a need not only to revise approaches to mathematical modeling of structural nonlinear vibrations, but also to choose/propose novel (extended) theoretically based methods and hence, motivating development of numerical algorithms, to get the authentic, reliable, validated and accurate solutions to complex mathematical models derived (nonlinear PDEs). The review introduces the reader to traditional approaches with a broad spectrum of the Fourier-type methods, Galerkin-type methods, Kantorovich–Vlasov methods, variational methods, variational iteration methods, as well as the methods of Vaindiner and Agranovskii–Baglai–Smirnov. While some of them are well known and applied by computational and engineering-oriented community, attention is paid to important (from our point of view) but not widely known and used classical approaches. In addition, the considerations are supported by the most popular and frequently employed algorithms and direct numerical schemes based on the finite element method (FEM) and finite difference method (FDM) to validate results obtained. In spite of a general aspect of the review paper, the traditional theoretical methods mentioned so far are quantified and compared with respect to applications to the novel branch of mechanics, i.e. vibrational behavior of nanostructures, which includes results of our own research presented throughout the paper. Namely, considerable effort has been devoted to investigate dynamic features of the Germain–Lagrange nanoplate (including physical nonlinearity and inhomogeneity of materials). Modified Germain–Lagrange equations are obtained using Kirchhoff’s hypothesis and relations based on the modified couple stress theory as well as Hamilton’s principle. A comparative analysis is carried out to identify the most effective methods for solving equations of mathematical physics taking as an example the modified Germain–Lagrange equation for a nanoplate. In numerical experiments with reducing the problem of PDEs to ODEs based on Fourier’s ideas (separation of variables), the Bubnov–Galerkin method of static problems and Faedo–Galerkin method of dynamic problems are employed and quantified. An exact solution governing the behavior of nanoplates served to quantify the efficiency of various reduction methods, including the Bubnov–Galerkin method, Kantorovich–Vlasov method, variational iterations and Vaindiner’s method (the last three methods include theorems regarding their numerical convergence). The numerical solutions have been compared with the solutions obtained by various combinations of the mentioned methods and with solutions obtained by FDM of the second order of accuracy and FEM for triangular and quadrangular finite elements. The studied methods of reduction to ordinary differential equations show high accuracy and feasibility to solve numerous problems of mathematical physics and mechanical systems with emphasis put on signal processing." @default.
- W3131645275 created "2021-03-01" @default.
- W3131645275 creator A5012658818 @default.
- W3131645275 creator A5013538580 @default.
- W3131645275 creator A5025074757 @default.
- W3131645275 creator A5052956760 @default.
- W3131645275 date "2021-02-18" @default.
- W3131645275 modified "2023-09-25" @default.
- W3131645275 title "Review of the Methods of Transition from Partial to Ordinary Differential Equations: From Macro- to Nano-structural Dynamics" @default.
- W3131645275 cites W1589702657 @default.
- W3131645275 cites W1967387339 @default.
- W3131645275 cites W1968519070 @default.
- W3131645275 cites W1969202999 @default.
- W3131645275 cites W1971372368 @default.
- W3131645275 cites W1984853762 @default.
- W3131645275 cites W1992036149 @default.
- W3131645275 cites W1996199419 @default.
- W3131645275 cites W1998494366 @default.
- W3131645275 cites W2003803951 @default.
- W3131645275 cites W2005116317 @default.
- W3131645275 cites W2011285458 @default.
- W3131645275 cites W2014251753 @default.
- W3131645275 cites W2016032149 @default.
- W3131645275 cites W2016859302 @default.
- W3131645275 cites W2017277446 @default.
- W3131645275 cites W2017503182 @default.
- W3131645275 cites W2024491907 @default.
- W3131645275 cites W2030804071 @default.
- W3131645275 cites W2034087289 @default.
- W3131645275 cites W2037307097 @default.
- W3131645275 cites W2038137143 @default.
- W3131645275 cites W2047787595 @default.
- W3131645275 cites W2055556299 @default.
- W3131645275 cites W2056236973 @default.
- W3131645275 cites W2057159272 @default.
- W3131645275 cites W2058395306 @default.
- W3131645275 cites W2060749520 @default.
- W3131645275 cites W2065121429 @default.
- W3131645275 cites W2075894548 @default.
- W3131645275 cites W2081197300 @default.
- W3131645275 cites W2081211029 @default.
- W3131645275 cites W2084579178 @default.
- W3131645275 cites W2090313841 @default.
- W3131645275 cites W2111491256 @default.
- W3131645275 cites W2134385637 @default.
- W3131645275 cites W2139497848 @default.
- W3131645275 cites W2140280013 @default.
- W3131645275 cites W2144399742 @default.
- W3131645275 cites W2151231772 @default.
- W3131645275 cites W2168358956 @default.
- W3131645275 cites W2337150822 @default.
- W3131645275 cites W2343782912 @default.
- W3131645275 cites W2398034978 @default.
- W3131645275 cites W2411658012 @default.
- W3131645275 cites W2417895669 @default.
- W3131645275 cites W2496525735 @default.
- W3131645275 cites W2556346763 @default.
- W3131645275 cites W2558735048 @default.
- W3131645275 cites W2566490041 @default.
- W3131645275 cites W2587882950 @default.
- W3131645275 cites W2603079254 @default.
- W3131645275 cites W2727155845 @default.
- W3131645275 cites W2738826092 @default.
- W3131645275 cites W2762585974 @default.
- W3131645275 cites W2792791015 @default.
- W3131645275 cites W2794867998 @default.
- W3131645275 cites W2885473730 @default.
- W3131645275 cites W2894891763 @default.
- W3131645275 cites W2898533352 @default.
- W3131645275 cites W2980109066 @default.
- W3131645275 cites W3096772561 @default.
- W3131645275 cites W3207519668 @default.
- W3131645275 cites W4232728741 @default.
- W3131645275 cites W4239741344 @default.
- W3131645275 cites W78141583 @default.
- W3131645275 cites W84759582 @default.
- W3131645275 cites W965078348 @default.
- W3131645275 doi "https://doi.org/10.1007/s11831-021-09550-5" @default.
- W3131645275 hasPublicationYear "2021" @default.
- W3131645275 type Work @default.
- W3131645275 sameAs 3131645275 @default.
- W3131645275 citedByCount "14" @default.
- W3131645275 countsByYear W31316452752021 @default.
- W3131645275 countsByYear W31316452752022 @default.
- W3131645275 countsByYear W31316452752023 @default.
- W3131645275 crossrefType "journal-article" @default.
- W3131645275 hasAuthorship W3131645275A5012658818 @default.
- W3131645275 hasAuthorship W3131645275A5013538580 @default.
- W3131645275 hasAuthorship W3131645275A5025074757 @default.
- W3131645275 hasAuthorship W3131645275A5052956760 @default.
- W3131645275 hasBestOaLocation W31316452751 @default.
- W3131645275 hasConcept C111335779 @default.
- W3131645275 hasConcept C121332964 @default.
- W3131645275 hasConcept C134306372 @default.
- W3131645275 hasConcept C135628077 @default.
- W3131645275 hasConcept C158622935 @default.
- W3131645275 hasConcept C166955791 @default.
- W3131645275 hasConcept C186899397 @default.