Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131771186> ?p ?o ?g. }
- W3131771186 endingPage "2000348" @default.
- W3131771186 startingPage "2000348" @default.
- W3131771186 abstract "Multimode fibers (MMF) are high-capacity channels and are promising to transmit spatially distributed information, such as an image. However, continuous transmission of randomly distributed information at a high-spatial density is still a challenge. Here, a high-spatial-density information transmission framework employing deep learning for MMFs is proposed. A proof-of-concept experimental system is presented to demonstrate up to 400-channel simultaneous data transmission with accuracy close to 100% over MMFs of different types, diameters, and lengths. A scalable semi-supervised learning model is proposed to adapt the convolutional neural network to the time-varying MMF information channels in real-time to overcome the instabilities in the lab environment. The preliminary results suggest that deep learning has the potential to maximize the use of the spatial dimension of MMFs for data transmission." @default.
- W3131771186 created "2021-03-01" @default.
- W3131771186 creator A5001046274 @default.
- W3131771186 creator A5017377137 @default.
- W3131771186 creator A5035182164 @default.
- W3131771186 creator A5049924861 @default.
- W3131771186 creator A5063405026 @default.
- W3131771186 creator A5077109349 @default.
- W3131771186 date "2021-02-24" @default.
- W3131771186 modified "2023-10-16" @default.
- W3131771186 title "Learning Enabled Continuous Transmission of Spatially Distributed Information through Multimode Fibers" @default.
- W3131771186 cites W1546326635 @default.
- W3131771186 cites W1963561884 @default.
- W3131771186 cites W1968022350 @default.
- W3131771186 cites W1969787177 @default.
- W3131771186 cites W1970850819 @default.
- W3131771186 cites W1974920772 @default.
- W3131771186 cites W1990970384 @default.
- W3131771186 cites W1996692633 @default.
- W3131771186 cites W1997668398 @default.
- W3131771186 cites W2019236124 @default.
- W3131771186 cites W2022388550 @default.
- W3131771186 cites W2042188630 @default.
- W3131771186 cites W2044574055 @default.
- W3131771186 cites W2063967396 @default.
- W3131771186 cites W2075721911 @default.
- W3131771186 cites W2076063813 @default.
- W3131771186 cites W2081018948 @default.
- W3131771186 cites W2091293637 @default.
- W3131771186 cites W2104895315 @default.
- W3131771186 cites W2127913709 @default.
- W3131771186 cites W2131477244 @default.
- W3131771186 cites W2133665775 @default.
- W3131771186 cites W2134319944 @default.
- W3131771186 cites W2146347351 @default.
- W3131771186 cites W2214095171 @default.
- W3131771186 cites W2255692513 @default.
- W3131771186 cites W2303900520 @default.
- W3131771186 cites W2333514158 @default.
- W3131771186 cites W2464304913 @default.
- W3131771186 cites W2773212898 @default.
- W3131771186 cites W2807057771 @default.
- W3131771186 cites W2845057599 @default.
- W3131771186 cites W2904404111 @default.
- W3131771186 cites W2919115771 @default.
- W3131771186 cites W2942354466 @default.
- W3131771186 cites W2950644780 @default.
- W3131771186 cites W2963285625 @default.
- W3131771186 cites W2963665033 @default.
- W3131771186 cites W3100754080 @default.
- W3131771186 cites W3100949998 @default.
- W3131771186 cites W3102098719 @default.
- W3131771186 cites W3102127550 @default.
- W3131771186 cites W3102277795 @default.
- W3131771186 cites W3103412703 @default.
- W3131771186 cites W3104635491 @default.
- W3131771186 cites W3105420146 @default.
- W3131771186 cites W3121735011 @default.
- W3131771186 cites W4205947740 @default.
- W3131771186 cites W866566511 @default.
- W3131771186 doi "https://doi.org/10.1002/lpor.202000348" @default.
- W3131771186 hasPublicationYear "2021" @default.
- W3131771186 type Work @default.
- W3131771186 sameAs 3131771186 @default.
- W3131771186 citedByCount "14" @default.
- W3131771186 countsByYear W31317711862021 @default.
- W3131771186 countsByYear W31317711862022 @default.
- W3131771186 countsByYear W31317711862023 @default.
- W3131771186 crossrefType "journal-article" @default.
- W3131771186 hasAuthorship W3131771186A5001046274 @default.
- W3131771186 hasAuthorship W3131771186A5017377137 @default.
- W3131771186 hasAuthorship W3131771186A5035182164 @default.
- W3131771186 hasAuthorship W3131771186A5049924861 @default.
- W3131771186 hasAuthorship W3131771186A5063405026 @default.
- W3131771186 hasAuthorship W3131771186A5077109349 @default.
- W3131771186 hasBestOaLocation W31317711861 @default.
- W3131771186 hasConcept C101645829 @default.
- W3131771186 hasConcept C108583219 @default.
- W3131771186 hasConcept C127162648 @default.
- W3131771186 hasConcept C127313418 @default.
- W3131771186 hasConcept C154945302 @default.
- W3131771186 hasConcept C159620131 @default.
- W3131771186 hasConcept C194232370 @default.
- W3131771186 hasConcept C31258907 @default.
- W3131771186 hasConcept C41008148 @default.
- W3131771186 hasConcept C48044578 @default.
- W3131771186 hasConcept C557945733 @default.
- W3131771186 hasConcept C62649853 @default.
- W3131771186 hasConcept C761482 @default.
- W3131771186 hasConcept C76155785 @default.
- W3131771186 hasConcept C77088390 @default.
- W3131771186 hasConcept C81363708 @default.
- W3131771186 hasConceptScore W3131771186C101645829 @default.
- W3131771186 hasConceptScore W3131771186C108583219 @default.
- W3131771186 hasConceptScore W3131771186C127162648 @default.
- W3131771186 hasConceptScore W3131771186C127313418 @default.
- W3131771186 hasConceptScore W3131771186C154945302 @default.
- W3131771186 hasConceptScore W3131771186C159620131 @default.