Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131796352> ?p ?o ?g. }
- W3131796352 endingPage "271" @default.
- W3131796352 startingPage "258" @default.
- W3131796352 abstract "Most digital cameras use specialized autofocus sensors, such as phase detection, lidar or ultrasound, to directly measure focus state. However, such sensors increase cost and complexity without directly optimizing final image quality. This paper proposes a new pipeline for image-based autofocus and shows that neural image analysis finds focus 5-10x faster than traditional contrast enhancement. We achieve this by learning the direct mapping between an image and its focus position. In further contrast with conventional methods, AI methods can generate scene-based focus trajectories that optimize synthesized image quality for dynamic and three dimensional scenes. We propose a focus control strategy that varies focal position dynamically to maximize image quality as estimated from the focal stack. We propose a rule-based agent and a learned agent for different scenarios and show their advantages over other focus stacking methods." @default.
- W3131796352 created "2021-03-01" @default.
- W3131796352 creator A5010714753 @default.
- W3131796352 creator A5037270103 @default.
- W3131796352 creator A5058525804 @default.
- W3131796352 creator A5073914656 @default.
- W3131796352 creator A5079178505 @default.
- W3131796352 date "2021-01-01" @default.
- W3131796352 modified "2023-10-15" @default.
- W3131796352 title "Deep Learning for Camera Autofocus" @default.
- W3131796352 cites W1457323852 @default.
- W3131796352 cites W1637187734 @default.
- W3131796352 cites W1975912948 @default.
- W3131796352 cites W1986489799 @default.
- W3131796352 cites W1999886853 @default.
- W3131796352 cites W2008990620 @default.
- W3131796352 cites W2015029243 @default.
- W3131796352 cites W2015959088 @default.
- W3131796352 cites W2016252664 @default.
- W3131796352 cites W2021404124 @default.
- W3131796352 cites W2038134596 @default.
- W3131796352 cites W2049617983 @default.
- W3131796352 cites W2051596736 @default.
- W3131796352 cites W2058161429 @default.
- W3131796352 cites W2064675550 @default.
- W3131796352 cites W2082087395 @default.
- W3131796352 cites W2091721145 @default.
- W3131796352 cites W2111943723 @default.
- W3131796352 cites W2119028667 @default.
- W3131796352 cites W2119717200 @default.
- W3131796352 cites W2121168672 @default.
- W3131796352 cites W2123017004 @default.
- W3131796352 cites W2161216727 @default.
- W3131796352 cites W2170930628 @default.
- W3131796352 cites W2295875277 @default.
- W3131796352 cites W2470139095 @default.
- W3131796352 cites W2540260254 @default.
- W3131796352 cites W2559870345 @default.
- W3131796352 cites W2618530766 @default.
- W3131796352 cites W2741137940 @default.
- W3131796352 cites W2742180631 @default.
- W3131796352 cites W2777032727 @default.
- W3131796352 cites W2777194773 @default.
- W3131796352 cites W2777967210 @default.
- W3131796352 cites W2780600106 @default.
- W3131796352 cites W2790356094 @default.
- W3131796352 cites W2790594255 @default.
- W3131796352 cites W2792179230 @default.
- W3131796352 cites W2808236703 @default.
- W3131796352 cites W2891108385 @default.
- W3131796352 cites W2892529542 @default.
- W3131796352 cites W2897324743 @default.
- W3131796352 cites W2942368658 @default.
- W3131796352 cites W2948499658 @default.
- W3131796352 cites W2952682925 @default.
- W3131796352 cites W2963321993 @default.
- W3131796352 cites W2976050555 @default.
- W3131796352 cites W3014421592 @default.
- W3131796352 cites W3034582814 @default.
- W3131796352 cites W3099878876 @default.
- W3131796352 cites W3100789280 @default.
- W3131796352 cites W3101550650 @default.
- W3131796352 cites W4249911582 @default.
- W3131796352 doi "https://doi.org/10.1109/tci.2021.3059497" @default.
- W3131796352 hasPublicationYear "2021" @default.
- W3131796352 type Work @default.
- W3131796352 sameAs 3131796352 @default.
- W3131796352 citedByCount "14" @default.
- W3131796352 countsByYear W31317963522021 @default.
- W3131796352 countsByYear W31317963522022 @default.
- W3131796352 countsByYear W31317963522023 @default.
- W3131796352 crossrefType "journal-article" @default.
- W3131796352 hasAuthorship W3131796352A5010714753 @default.
- W3131796352 hasAuthorship W3131796352A5037270103 @default.
- W3131796352 hasAuthorship W3131796352A5058525804 @default.
- W3131796352 hasAuthorship W3131796352A5073914656 @default.
- W3131796352 hasAuthorship W3131796352A5079178505 @default.
- W3131796352 hasConcept C10138342 @default.
- W3131796352 hasConcept C103764139 @default.
- W3131796352 hasConcept C115961682 @default.
- W3131796352 hasConcept C120665830 @default.
- W3131796352 hasConcept C121332964 @default.
- W3131796352 hasConcept C154945302 @default.
- W3131796352 hasConcept C162324750 @default.
- W3131796352 hasConcept C192209626 @default.
- W3131796352 hasConcept C198082294 @default.
- W3131796352 hasConcept C199360897 @default.
- W3131796352 hasConcept C31972630 @default.
- W3131796352 hasConcept C41008148 @default.
- W3131796352 hasConcept C43521106 @default.
- W3131796352 hasConcept C55020928 @default.
- W3131796352 hasConceptScore W3131796352C10138342 @default.
- W3131796352 hasConceptScore W3131796352C103764139 @default.
- W3131796352 hasConceptScore W3131796352C115961682 @default.
- W3131796352 hasConceptScore W3131796352C120665830 @default.
- W3131796352 hasConceptScore W3131796352C121332964 @default.
- W3131796352 hasConceptScore W3131796352C154945302 @default.
- W3131796352 hasConceptScore W3131796352C162324750 @default.