Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131822013> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3131822013 abstract "Abstract The Taylor cone jet is a well-known electrohydrodynamic flow (EHD), usually produced by applying an external electric field to a capillary liquid. The generation of this kind of flow involves a multi-phase and a multi-physics process and its stability has a specific operation window. This operating window is intrinsically dependent on the flow rate and magnitude of the applied electric voltage. In case high voltages are applied to the jet it can atomize and produce an electrospray. Our work presents a numerical study of the process of atomization of a Taylor cone jet using computational fluid dynamics (CFD). The study intents to assess the limit conditions of operation and the applied voltage needed to stabilize an electrospray. The numerical model was implemented within OpenFOAM, where the multi-phase hydrodynamics equations are solved using a volume-of-fluid (VOF) approach. This method is coupled with the Maxwell equations governing an electrostatic field, in order to incorporate the electric body forces into the incompressible Navier-Stokes equations. The leaky-dielectric model is used and, therefore, the interface between the two phases is subject to the hydrodynamic surface tension and electric stress (Maxwell stress). This allows a leakage of charge though the phase due to ohmic conduction. Thus, the permittivity and conductivity of the phases are taken into consideration. A two-fluid system with relevant electric properties can be categorized as, dielectric-dielectric, dielectric-conducting, and conducting-conducting considering the electrical conductivity and permittivities of the participating phases. Due to the usage of the leaky-dielectric model, it is possible to simulate any of this physical situations. By increasing the applied voltage reaches a value where the cone instability is verified, allowing a discussion on this effect. It is demonstrated that to adequately model the process of atomization a fine grid refinement is needed. The validation of the numerical model is made by comparing against diverse experimental data, for the case of a stable jet. The diameter and velocity of the droplet and the electric current of the jet are the main variables that are compared with previous results. The tests were performed with Heptane. The cone and the jet are strongly affected by the flow rate. The dimensionless diameter, as a function of the dimensionless flow rate, agrees with the scaling laws. The model predicts accurate results over a wide range of flow rates with an accuracy of around 10%. The results are obtained using structured meshes." @default.
- W3131822013 created "2021-03-01" @default.
- W3131822013 creator A5055862255 @default.
- W3131822013 creator A5083394372 @default.
- W3131822013 date "2020-11-16" @default.
- W3131822013 modified "2023-09-25" @default.
- W3131822013 title "Numerical Analysis on the Stability Conditions of an Electrohydrodynamic Jet" @default.
- W3131822013 doi "https://doi.org/10.1115/imece2020-24101" @default.
- W3131822013 hasPublicationYear "2020" @default.
- W3131822013 type Work @default.
- W3131822013 sameAs 3131822013 @default.
- W3131822013 citedByCount "0" @default.
- W3131822013 crossrefType "proceedings-article" @default.
- W3131822013 hasAuthorship W3131822013A5055862255 @default.
- W3131822013 hasAuthorship W3131822013A5083394372 @default.
- W3131822013 hasConcept C119947313 @default.
- W3131822013 hasConcept C121332964 @default.
- W3131822013 hasConcept C127210992 @default.
- W3131822013 hasConcept C133386390 @default.
- W3131822013 hasConcept C165801399 @default.
- W3131822013 hasConcept C168651791 @default.
- W3131822013 hasConcept C28413391 @default.
- W3131822013 hasConcept C38349280 @default.
- W3131822013 hasConcept C49040817 @default.
- W3131822013 hasConcept C57879066 @default.
- W3131822013 hasConcept C60799052 @default.
- W3131822013 hasConcept C62520636 @default.
- W3131822013 hasConcept C80487561 @default.
- W3131822013 hasConcept C8892853 @default.
- W3131822013 hasConcept C95238685 @default.
- W3131822013 hasConcept C97355855 @default.
- W3131822013 hasConceptScore W3131822013C119947313 @default.
- W3131822013 hasConceptScore W3131822013C121332964 @default.
- W3131822013 hasConceptScore W3131822013C127210992 @default.
- W3131822013 hasConceptScore W3131822013C133386390 @default.
- W3131822013 hasConceptScore W3131822013C165801399 @default.
- W3131822013 hasConceptScore W3131822013C168651791 @default.
- W3131822013 hasConceptScore W3131822013C28413391 @default.
- W3131822013 hasConceptScore W3131822013C38349280 @default.
- W3131822013 hasConceptScore W3131822013C49040817 @default.
- W3131822013 hasConceptScore W3131822013C57879066 @default.
- W3131822013 hasConceptScore W3131822013C60799052 @default.
- W3131822013 hasConceptScore W3131822013C62520636 @default.
- W3131822013 hasConceptScore W3131822013C80487561 @default.
- W3131822013 hasConceptScore W3131822013C8892853 @default.
- W3131822013 hasConceptScore W3131822013C95238685 @default.
- W3131822013 hasConceptScore W3131822013C97355855 @default.
- W3131822013 hasLocation W31318220131 @default.
- W3131822013 hasOpenAccess W3131822013 @default.
- W3131822013 hasPrimaryLocation W31318220131 @default.
- W3131822013 hasRelatedWork W14175906 @default.
- W3131822013 hasRelatedWork W14299523 @default.
- W3131822013 hasRelatedWork W15580857 @default.
- W3131822013 hasRelatedWork W19418647 @default.
- W3131822013 hasRelatedWork W20162912 @default.
- W3131822013 hasRelatedWork W23511982 @default.
- W3131822013 hasRelatedWork W2595437 @default.
- W3131822013 hasRelatedWork W26431749 @default.
- W3131822013 hasRelatedWork W3723767 @default.
- W3131822013 hasRelatedWork W6731711 @default.
- W3131822013 isParatext "false" @default.
- W3131822013 isRetracted "false" @default.
- W3131822013 magId "3131822013" @default.
- W3131822013 workType "article" @default.