Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131829991> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3131829991 abstract "Many researchers developed new algorithms to predict the faults of unmanned aerial vehicles (UAV). These algorithms detect anomalies in the streamed data of the UAV and label them as potential faults. Most of these algorithms consider neither the complex relationships among the UAV variables nor the temporal patterns of the previous instances, which leaves a potential opportunity for new ideas. A new method for analyzing the relationships and the temporal patterns of every two variables to detect the potentially defected sensors. The proposed method depends on a new platform, which is composed of multiple deep neural networks. The method starts by building and training this platform. The training step requires reshaping the dataset into a set of subdatasets. Each new subdataset is used to train one deep neural network. In the testing phase, the method reads new instances of the UAV testing dataset. The output of the algorithm is the predicted potential faults. The proposed approach is evaluated and compared it with other well-known algorithms. The proposed approach showed promising results in predicting different kinds of faults." @default.
- W3131829991 created "2021-03-01" @default.
- W3131829991 creator A5029570376 @default.
- W3131829991 creator A5034284727 @default.
- W3131829991 date "2021-01-01" @default.
- W3131829991 modified "2023-09-24" @default.
- W3131829991 title "Using Multiple Deep Neural Networks Platform to Detect Different Types of Potential Faults in Unmanned Aerial Vehicles" @default.
- W3131829991 cites W1549523743 @default.
- W3131829991 cites W1655425503 @default.
- W3131829991 cites W2037969016 @default.
- W3131829991 cites W2050969847 @default.
- W3131829991 cites W2122646361 @default.
- W3131829991 cites W2756873776 @default.
- W3131829991 cites W2773131928 @default.
- W3131829991 cites W2792736988 @default.
- W3131829991 cites W2890519000 @default.
- W3131829991 cites W2906498146 @default.
- W3131829991 cites W2910486228 @default.
- W3131829991 doi "https://doi.org/10.1590/jatm.v13.1186" @default.
- W3131829991 hasPublicationYear "2021" @default.
- W3131829991 type Work @default.
- W3131829991 sameAs 3131829991 @default.
- W3131829991 citedByCount "1" @default.
- W3131829991 countsByYear W31318299912022 @default.
- W3131829991 crossrefType "journal-article" @default.
- W3131829991 hasAuthorship W3131829991A5029570376 @default.
- W3131829991 hasAuthorship W3131829991A5034284727 @default.
- W3131829991 hasBestOaLocation W31318299911 @default.
- W3131829991 hasConcept C108583219 @default.
- W3131829991 hasConcept C119857082 @default.
- W3131829991 hasConcept C124101348 @default.
- W3131829991 hasConcept C153180895 @default.
- W3131829991 hasConcept C154945302 @default.
- W3131829991 hasConcept C177264268 @default.
- W3131829991 hasConcept C199360897 @default.
- W3131829991 hasConcept C2984842247 @default.
- W3131829991 hasConcept C41008148 @default.
- W3131829991 hasConcept C50644808 @default.
- W3131829991 hasConcept C51632099 @default.
- W3131829991 hasConcept C79403827 @default.
- W3131829991 hasConceptScore W3131829991C108583219 @default.
- W3131829991 hasConceptScore W3131829991C119857082 @default.
- W3131829991 hasConceptScore W3131829991C124101348 @default.
- W3131829991 hasConceptScore W3131829991C153180895 @default.
- W3131829991 hasConceptScore W3131829991C154945302 @default.
- W3131829991 hasConceptScore W3131829991C177264268 @default.
- W3131829991 hasConceptScore W3131829991C199360897 @default.
- W3131829991 hasConceptScore W3131829991C2984842247 @default.
- W3131829991 hasConceptScore W3131829991C41008148 @default.
- W3131829991 hasConceptScore W3131829991C50644808 @default.
- W3131829991 hasConceptScore W3131829991C51632099 @default.
- W3131829991 hasConceptScore W3131829991C79403827 @default.
- W3131829991 hasLocation W31318299911 @default.
- W3131829991 hasOpenAccess W3131829991 @default.
- W3131829991 hasPrimaryLocation W31318299911 @default.
- W3131829991 hasRelatedWork W10719664 @default.
- W3131829991 hasRelatedWork W11356396 @default.
- W3131829991 hasRelatedWork W13451536 @default.
- W3131829991 hasRelatedWork W4771408 @default.
- W3131829991 hasRelatedWork W482721 @default.
- W3131829991 hasRelatedWork W6680660 @default.
- W3131829991 hasRelatedWork W7982726 @default.
- W3131829991 hasRelatedWork W8198582 @default.
- W3131829991 hasRelatedWork W8787759 @default.
- W3131829991 hasRelatedWork W9190101 @default.
- W3131829991 isParatext "false" @default.
- W3131829991 isRetracted "false" @default.
- W3131829991 magId "3131829991" @default.
- W3131829991 workType "article" @default.