Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131961331> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W3131961331 abstract "Apart from machine learning and knowledge engineering, there is a third way of challenging machine vision – the Gestalt law school. In an interdisciplinary effort between psychology and cybernetics, compositionality in perception has been studied for at least a century along these lines. Hierarchical compositions of parts and aggregates are possible in this approach. This is particularly required for high-quality high-resolution imagery becoming more and more common, because tiny details may be important as well as large-scale interdependency over several thousand pixels distance. The contribution at hand studies the depth of Gestalt-hierarchies in a typical image genre – the group picture – exemplarily, and outlines technical means for their automatic extraction. The practical part applies bottom-up hierarchical Gestalt grouping as well as top-down search focusing, listing as well success as failure. In doing so, the paper discusses exemplarily the depth and nature of such compositions in imagery relevant to human beings." @default.
- W3131961331 created "2021-03-01" @default.
- W3131961331 creator A5022977818 @default.
- W3131961331 date "2021-01-01" @default.
- W3131961331 modified "2023-10-16" @default.
- W3131961331 title "On the Depth of Gestalt Hierarchies in Common Imagery" @default.
- W3131961331 cites W1981078224 @default.
- W3131961331 cites W2017537431 @default.
- W3131961331 cites W2118246710 @default.
- W3131961331 cites W219359695 @default.
- W3131961331 cites W2765975602 @default.
- W3131961331 cites W2912518182 @default.
- W3131961331 cites W2974664291 @default.
- W3131961331 cites W2985775525 @default.
- W3131961331 cites W3012483050 @default.
- W3131961331 cites W4229732326 @default.
- W3131961331 cites W4231878552 @default.
- W3131961331 cites W4256185256 @default.
- W3131961331 doi "https://doi.org/10.1007/978-3-030-68821-9_3" @default.
- W3131961331 hasPublicationYear "2021" @default.
- W3131961331 type Work @default.
- W3131961331 sameAs 3131961331 @default.
- W3131961331 citedByCount "2" @default.
- W3131961331 countsByYear W31319613312021 @default.
- W3131961331 crossrefType "book-chapter" @default.
- W3131961331 hasAuthorship W3131961331A5022977818 @default.
- W3131961331 hasConcept C111472728 @default.
- W3131961331 hasConcept C138885662 @default.
- W3131961331 hasConcept C154945302 @default.
- W3131961331 hasConcept C26760741 @default.
- W3131961331 hasConcept C27362006 @default.
- W3131961331 hasConcept C41008148 @default.
- W3131961331 hasConceptScore W3131961331C111472728 @default.
- W3131961331 hasConceptScore W3131961331C138885662 @default.
- W3131961331 hasConceptScore W3131961331C154945302 @default.
- W3131961331 hasConceptScore W3131961331C26760741 @default.
- W3131961331 hasConceptScore W3131961331C27362006 @default.
- W3131961331 hasConceptScore W3131961331C41008148 @default.
- W3131961331 hasLocation W31319613311 @default.
- W3131961331 hasOpenAccess W3131961331 @default.
- W3131961331 hasPrimaryLocation W31319613311 @default.
- W3131961331 hasRelatedWork W12573367 @default.
- W3131961331 hasRelatedWork W1296442 @default.
- W3131961331 hasRelatedWork W13553219 @default.
- W3131961331 hasRelatedWork W2633549 @default.
- W3131961331 hasRelatedWork W4519317 @default.
- W3131961331 hasRelatedWork W461349 @default.
- W3131961331 hasRelatedWork W5883238 @default.
- W3131961331 hasRelatedWork W7619841 @default.
- W3131961331 hasRelatedWork W9986601 @default.
- W3131961331 hasRelatedWork W10793339 @default.
- W3131961331 isParatext "false" @default.
- W3131961331 isRetracted "false" @default.
- W3131961331 magId "3131961331" @default.
- W3131961331 workType "book-chapter" @default.