Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131996593> ?p ?o ?g. }
- W3131996593 endingPage "3591" @default.
- W3131996593 startingPage "3577" @default.
- W3131996593 abstract "Accurate estimates of network parameters are essential for modeling, monitoring, and control in power distribution systems. In this paper, we develop a physics-informed graphical learning algorithm to estimate network parameters of three-phase power distribution systems. Our proposed algorithm uses only readily available smart meter data to estimate the three-phase series resistance and reactance of the primary distribution line segments. We first develop a parametric physics-based model to replace the black-box deep neural networks in the conventional graphical neural network (GNN). Then we derive the gradient of the loss function with respect to the network parameters and use stochastic gradient descent (SGD) to estimate the physical parameters. Prior knowledge of network parameters is also considered to further improve the accuracy of estimation. Comprehensive numerical study results show that our proposed algorithm yields high accuracy and outperforms existing methods." @default.
- W3131996593 created "2021-03-01" @default.
- W3131996593 creator A5013303786 @default.
- W3131996593 creator A5029525096 @default.
- W3131996593 date "2022-09-01" @default.
- W3131996593 modified "2023-09-23" @default.
- W3131996593 title "Estimate Three-Phase Distribution Line Parameters With Physics-Informed Graphical Learning Method" @default.
- W3131996593 cites W1658287798 @default.
- W3131996593 cites W2007431958 @default.
- W3131996593 cites W2068193360 @default.
- W3131996593 cites W2116341502 @default.
- W3131996593 cites W2142877134 @default.
- W3131996593 cites W2169848883 @default.
- W3131996593 cites W2287047720 @default.
- W3131996593 cites W2326935886 @default.
- W3131996593 cites W2520864676 @default.
- W3131996593 cites W2551178605 @default.
- W3131996593 cites W2583707791 @default.
- W3131996593 cites W2593484105 @default.
- W3131996593 cites W2609909535 @default.
- W3131996593 cites W2765286329 @default.
- W3131996593 cites W2775509410 @default.
- W3131996593 cites W2900008834 @default.
- W3131996593 cites W2903638091 @default.
- W3131996593 cites W2946057511 @default.
- W3131996593 cites W2962882818 @default.
- W3131996593 cites W2962946572 @default.
- W3131996593 cites W2983971432 @default.
- W3131996593 cites W3007852349 @default.
- W3131996593 cites W3011213441 @default.
- W3131996593 cites W3015899387 @default.
- W3131996593 cites W3036072280 @default.
- W3131996593 cites W3045961302 @default.
- W3131996593 cites W3082337926 @default.
- W3131996593 cites W3093637890 @default.
- W3131996593 cites W3152893301 @default.
- W3131996593 doi "https://doi.org/10.1109/tpwrs.2021.3134952" @default.
- W3131996593 hasPublicationYear "2022" @default.
- W3131996593 type Work @default.
- W3131996593 sameAs 3131996593 @default.
- W3131996593 citedByCount "5" @default.
- W3131996593 countsByYear W31319965932022 @default.
- W3131996593 countsByYear W31319965932023 @default.
- W3131996593 crossrefType "journal-article" @default.
- W3131996593 hasAuthorship W3131996593A5013303786 @default.
- W3131996593 hasAuthorship W3131996593A5029525096 @default.
- W3131996593 hasBestOaLocation W31319965932 @default.
- W3131996593 hasConcept C10558101 @default.
- W3131996593 hasConcept C105795698 @default.
- W3131996593 hasConcept C11413529 @default.
- W3131996593 hasConcept C117251300 @default.
- W3131996593 hasConcept C119599485 @default.
- W3131996593 hasConcept C119857082 @default.
- W3131996593 hasConcept C127413603 @default.
- W3131996593 hasConcept C153258448 @default.
- W3131996593 hasConcept C154945302 @default.
- W3131996593 hasConcept C165801399 @default.
- W3131996593 hasConcept C176661527 @default.
- W3131996593 hasConcept C198352243 @default.
- W3131996593 hasConcept C2524010 @default.
- W3131996593 hasConcept C2779510800 @default.
- W3131996593 hasConcept C33923547 @default.
- W3131996593 hasConcept C41008148 @default.
- W3131996593 hasConcept C50644808 @default.
- W3131996593 hasConceptScore W3131996593C10558101 @default.
- W3131996593 hasConceptScore W3131996593C105795698 @default.
- W3131996593 hasConceptScore W3131996593C11413529 @default.
- W3131996593 hasConceptScore W3131996593C117251300 @default.
- W3131996593 hasConceptScore W3131996593C119599485 @default.
- W3131996593 hasConceptScore W3131996593C119857082 @default.
- W3131996593 hasConceptScore W3131996593C127413603 @default.
- W3131996593 hasConceptScore W3131996593C153258448 @default.
- W3131996593 hasConceptScore W3131996593C154945302 @default.
- W3131996593 hasConceptScore W3131996593C165801399 @default.
- W3131996593 hasConceptScore W3131996593C176661527 @default.
- W3131996593 hasConceptScore W3131996593C198352243 @default.
- W3131996593 hasConceptScore W3131996593C2524010 @default.
- W3131996593 hasConceptScore W3131996593C2779510800 @default.
- W3131996593 hasConceptScore W3131996593C33923547 @default.
- W3131996593 hasConceptScore W3131996593C41008148 @default.
- W3131996593 hasConceptScore W3131996593C50644808 @default.
- W3131996593 hasFunder F4320308077 @default.
- W3131996593 hasIssue "5" @default.
- W3131996593 hasLocation W31319965931 @default.
- W3131996593 hasLocation W31319965932 @default.
- W3131996593 hasOpenAccess W3131996593 @default.
- W3131996593 hasPrimaryLocation W31319965931 @default.
- W3131996593 hasRelatedWork W2961085424 @default.
- W3131996593 hasRelatedWork W3046775127 @default.
- W3131996593 hasRelatedWork W3131996593 @default.
- W3131996593 hasRelatedWork W4225307033 @default.
- W3131996593 hasRelatedWork W4285260836 @default.
- W3131996593 hasRelatedWork W4286629047 @default.
- W3131996593 hasRelatedWork W4306321456 @default.
- W3131996593 hasRelatedWork W4306674287 @default.
- W3131996593 hasRelatedWork W1629725936 @default.
- W3131996593 hasRelatedWork W4224009465 @default.
- W3131996593 hasVolume "37" @default.