Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132028006> ?p ?o ?g. }
- W3132028006 endingPage "28768" @default.
- W3132028006 startingPage "28753" @default.
- W3132028006 abstract "K-Means clustering algorithm is a typical unsupervised learning method, and it has been widely used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to efficiently and accurately perform clustering analysis on the massive running-state monitoring data of rolling bearing. Therefore, a novel fault diagnosis method of rolling bearing using Spark-based parallel ant colony optimization (ACO)-K-Means clustering algorithm is proposed. Firstly, a Spark-based three-layer wavelet packet decomposition approach is developed to efficiently preprocess the running-state monitoring data to obtain eigenvectors, which are stored in Hadoop Distributed File System (HDFS) and served as the input of ACO-K-Means clustering algorithm. Secondly, ACO-K-Means clustering algorithm suitable for rolling bearing fault diagnosis is proposed to improve the diagnosis accuracy. ACO algorithm is adopted to obtain the global optimal initial clustering centers of K-Means from all eigenvectors, and the K-Means clustering algorithm based on weighted Euclidean distance is used to perform clustering analysis on all eigenvectors to obtain a rolling bearing fault diagnosis model. Thirdly, the efficient parallelization of ACO-K-Means clustering algorithm is implemented on a Spark platform, which can make full use of the computing resources of a cluster to efficiently process large-scale rolling bearing datasets in parallel. Extensive experiments are conducted to verify the effectiveness of the proposed fault diagnosis method. Experimental results show that the proposed method can not only achieve good fault diagnosis accuracy but also provide high model training efficiency and fault diagnosis efficiency in a big data environment." @default.
- W3132028006 created "2021-03-01" @default.
- W3132028006 creator A5029688473 @default.
- W3132028006 creator A5032952145 @default.
- W3132028006 creator A5035027293 @default.
- W3132028006 creator A5083095344 @default.
- W3132028006 date "2021-01-01" @default.
- W3132028006 modified "2023-09-30" @default.
- W3132028006 title "A Novel Bearing Fault Diagnosis Method Using Spark-Based Parallel ACO-K-Means Clustering Algorithm" @default.
- W3132028006 cites W2105947650 @default.
- W3132028006 cites W2136023023 @default.
- W3132028006 cites W2194775991 @default.
- W3132028006 cites W2275614980 @default.
- W3132028006 cites W2565940162 @default.
- W3132028006 cites W2601590138 @default.
- W3132028006 cites W2618530766 @default.
- W3132028006 cites W2734767230 @default.
- W3132028006 cites W2736225434 @default.
- W3132028006 cites W2736470268 @default.
- W3132028006 cites W2767234670 @default.
- W3132028006 cites W2768753204 @default.
- W3132028006 cites W2770417900 @default.
- W3132028006 cites W2773310737 @default.
- W3132028006 cites W2789511664 @default.
- W3132028006 cites W2791694051 @default.
- W3132028006 cites W2792191775 @default.
- W3132028006 cites W2802772536 @default.
- W3132028006 cites W2809350318 @default.
- W3132028006 cites W2883472060 @default.
- W3132028006 cites W2906578288 @default.
- W3132028006 cites W2906927949 @default.
- W3132028006 cites W2916091221 @default.
- W3132028006 cites W2923503954 @default.
- W3132028006 cites W2931331224 @default.
- W3132028006 cites W2941358638 @default.
- W3132028006 cites W2944122571 @default.
- W3132028006 cites W2945553284 @default.
- W3132028006 cites W2954766195 @default.
- W3132028006 cites W2971894154 @default.
- W3132028006 cites W2989341113 @default.
- W3132028006 cites W3006945411 @default.
- W3132028006 cites W3010514468 @default.
- W3132028006 cites W3010966533 @default.
- W3132028006 cites W4292083457 @default.
- W3132028006 doi "https://doi.org/10.1109/access.2021.3059221" @default.
- W3132028006 hasPublicationYear "2021" @default.
- W3132028006 type Work @default.
- W3132028006 sameAs 3132028006 @default.
- W3132028006 citedByCount "14" @default.
- W3132028006 countsByYear W31320280062021 @default.
- W3132028006 countsByYear W31320280062022 @default.
- W3132028006 countsByYear W31320280062023 @default.
- W3132028006 crossrefType "journal-article" @default.
- W3132028006 hasAuthorship W3132028006A5029688473 @default.
- W3132028006 hasAuthorship W3132028006A5032952145 @default.
- W3132028006 hasAuthorship W3132028006A5035027293 @default.
- W3132028006 hasAuthorship W3132028006A5083095344 @default.
- W3132028006 hasBestOaLocation W31320280061 @default.
- W3132028006 hasConcept C104047586 @default.
- W3132028006 hasConcept C11413529 @default.
- W3132028006 hasConcept C124101348 @default.
- W3132028006 hasConcept C127313418 @default.
- W3132028006 hasConcept C154945302 @default.
- W3132028006 hasConcept C165205528 @default.
- W3132028006 hasConcept C175551986 @default.
- W3132028006 hasConcept C193143536 @default.
- W3132028006 hasConcept C199360897 @default.
- W3132028006 hasConcept C207968372 @default.
- W3132028006 hasConcept C2781215313 @default.
- W3132028006 hasConcept C33704608 @default.
- W3132028006 hasConcept C41008148 @default.
- W3132028006 hasConcept C73555534 @default.
- W3132028006 hasConcept C94641424 @default.
- W3132028006 hasConceptScore W3132028006C104047586 @default.
- W3132028006 hasConceptScore W3132028006C11413529 @default.
- W3132028006 hasConceptScore W3132028006C124101348 @default.
- W3132028006 hasConceptScore W3132028006C127313418 @default.
- W3132028006 hasConceptScore W3132028006C154945302 @default.
- W3132028006 hasConceptScore W3132028006C165205528 @default.
- W3132028006 hasConceptScore W3132028006C175551986 @default.
- W3132028006 hasConceptScore W3132028006C193143536 @default.
- W3132028006 hasConceptScore W3132028006C199360897 @default.
- W3132028006 hasConceptScore W3132028006C207968372 @default.
- W3132028006 hasConceptScore W3132028006C2781215313 @default.
- W3132028006 hasConceptScore W3132028006C33704608 @default.
- W3132028006 hasConceptScore W3132028006C41008148 @default.
- W3132028006 hasConceptScore W3132028006C73555534 @default.
- W3132028006 hasConceptScore W3132028006C94641424 @default.
- W3132028006 hasFunder F4320321001 @default.
- W3132028006 hasFunder F4320322843 @default.
- W3132028006 hasFunder F4320330214 @default.
- W3132028006 hasLocation W31320280061 @default.
- W3132028006 hasOpenAccess W3132028006 @default.
- W3132028006 hasPrimaryLocation W31320280061 @default.
- W3132028006 hasRelatedWork W2036503911 @default.
- W3132028006 hasRelatedWork W2163563073 @default.
- W3132028006 hasRelatedWork W2181939267 @default.
- W3132028006 hasRelatedWork W2187506573 @default.