Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132074189> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3132074189 endingPage "32773" @default.
- W3132074189 startingPage "32760" @default.
- W3132074189 abstract "Virtual currency trading develops rapidly, taking up a large proportion in the whole economy, and has become an important part of people's daily life. Firstly, a reliable virtual currency trading system model is proposed, which is composed of four participant platforms, providers and payers, mainly including the purchase of virtual currency, purchase of virtual goods or services, exchange of virtual currency and other trading activities. In order to monitor possible collusion fraud in virtual currency transactions, payers are introduced to prevent collusion attacks. Video face detection algorithm based on multi-task Cascaded Convolutional Networks is designed and implemented to solve the problems of pose, light and occlusion in the virtual currency trading system. The algorithm utilizes the inherent correlation between detection and calibration to improve the detection performance under the framework of deep cascading tasks. Furthermore, the paper utilizes the three-tiered architecture combined with the well-designed VNN algorithm to realize the face detection and the rough location of key points. Meanwhile, on the basis of in-depth study and analysis of traditional face detection technology, a face detection algorithm based on Harr features and AdaBoost is implemented for comparison and analysis with the aforementioned algorithm. The experimental results show that the method based on MTCNN deep learning network can better extract effective features about faces in videos and achieve more accurate detection. Compared with the traditional method based on AdaBoost and cascade structure, the positive detection rate is much improved." @default.
- W3132074189 created "2021-03-01" @default.
- W3132074189 creator A5033986825 @default.
- W3132074189 date "2021-01-01" @default.
- W3132074189 modified "2023-10-14" @default.
- W3132074189 title "Video Face Recognition of Virtual Currency Trading System Based on Deep Learning Algorithms" @default.
- W3132074189 cites W1981470744 @default.
- W3132074189 cites W1989696483 @default.
- W3132074189 cites W2029762180 @default.
- W3132074189 cites W2056084266 @default.
- W3132074189 cites W2346012296 @default.
- W3132074189 cites W2410240439 @default.
- W3132074189 cites W2418022070 @default.
- W3132074189 cites W2551651401 @default.
- W3132074189 cites W2809976972 @default.
- W3132074189 cites W2889554700 @default.
- W3132074189 cites W2899899032 @default.
- W3132074189 cites W2921725790 @default.
- W3132074189 cites W2927616648 @default.
- W3132074189 cites W2943897738 @default.
- W3132074189 cites W2948290085 @default.
- W3132074189 cites W2957224849 @default.
- W3132074189 cites W2961926658 @default.
- W3132074189 cites W2984343223 @default.
- W3132074189 cites W2985732284 @default.
- W3132074189 cites W2989591581 @default.
- W3132074189 cites W2995881378 @default.
- W3132074189 cites W3015476536 @default.
- W3132074189 cites W3033185884 @default.
- W3132074189 cites W3080080402 @default.
- W3132074189 cites W3082967155 @default.
- W3132074189 cites W3083553012 @default.
- W3132074189 cites W3088006684 @default.
- W3132074189 cites W3097560058 @default.
- W3132074189 cites W4239245740 @default.
- W3132074189 doi "https://doi.org/10.1109/access.2021.3060458" @default.
- W3132074189 hasPublicationYear "2021" @default.
- W3132074189 type Work @default.
- W3132074189 sameAs 3132074189 @default.
- W3132074189 citedByCount "4" @default.
- W3132074189 countsByYear W31320741892021 @default.
- W3132074189 countsByYear W31320741892022 @default.
- W3132074189 countsByYear W31320741892023 @default.
- W3132074189 crossrefType "journal-article" @default.
- W3132074189 hasAuthorship W3132074189A5033986825 @default.
- W3132074189 hasBestOaLocation W31320741891 @default.
- W3132074189 hasConcept C11413529 @default.
- W3132074189 hasConcept C119857082 @default.
- W3132074189 hasConcept C12267149 @default.
- W3132074189 hasConcept C141121606 @default.
- W3132074189 hasConcept C141404830 @default.
- W3132074189 hasConcept C153180895 @default.
- W3132074189 hasConcept C154945302 @default.
- W3132074189 hasConcept C162324750 @default.
- W3132074189 hasConcept C175444787 @default.
- W3132074189 hasConcept C2781198186 @default.
- W3132074189 hasConcept C31510193 @default.
- W3132074189 hasConcept C41008148 @default.
- W3132074189 hasConcept C4641261 @default.
- W3132074189 hasConcept C47487560 @default.
- W3132074189 hasConcept C556758197 @default.
- W3132074189 hasConceptScore W3132074189C11413529 @default.
- W3132074189 hasConceptScore W3132074189C119857082 @default.
- W3132074189 hasConceptScore W3132074189C12267149 @default.
- W3132074189 hasConceptScore W3132074189C141121606 @default.
- W3132074189 hasConceptScore W3132074189C141404830 @default.
- W3132074189 hasConceptScore W3132074189C153180895 @default.
- W3132074189 hasConceptScore W3132074189C154945302 @default.
- W3132074189 hasConceptScore W3132074189C162324750 @default.
- W3132074189 hasConceptScore W3132074189C175444787 @default.
- W3132074189 hasConceptScore W3132074189C2781198186 @default.
- W3132074189 hasConceptScore W3132074189C31510193 @default.
- W3132074189 hasConceptScore W3132074189C41008148 @default.
- W3132074189 hasConceptScore W3132074189C4641261 @default.
- W3132074189 hasConceptScore W3132074189C47487560 @default.
- W3132074189 hasConceptScore W3132074189C556758197 @default.
- W3132074189 hasLocation W31320741891 @default.
- W3132074189 hasOpenAccess W3132074189 @default.
- W3132074189 hasPrimaryLocation W31320741891 @default.
- W3132074189 hasRelatedWork W2010773589 @default.
- W3132074189 hasRelatedWork W2063246730 @default.
- W3132074189 hasRelatedWork W2115296911 @default.
- W3132074189 hasRelatedWork W2130288511 @default.
- W3132074189 hasRelatedWork W2136858165 @default.
- W3132074189 hasRelatedWork W2159209200 @default.
- W3132074189 hasRelatedWork W2169909711 @default.
- W3132074189 hasRelatedWork W2373478416 @default.
- W3132074189 hasRelatedWork W2928480960 @default.
- W3132074189 hasRelatedWork W4205619187 @default.
- W3132074189 hasVolume "9" @default.
- W3132074189 isParatext "false" @default.
- W3132074189 isRetracted "false" @default.
- W3132074189 magId "3132074189" @default.
- W3132074189 workType "article" @default.