Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132108931> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3132108931 endingPage "215" @default.
- W3132108931 startingPage "208" @default.
- W3132108931 abstract "• It reports the first attempt in integrating multi-objective optimization and generation of overlapped subspace clusters. • The proposed method defines a new objective function in order to select the optimum subspace feature set for each cluster. • To allow the overlapping of objects, an objective function is defined that optimizes the membership degree. • Mutation operators that have been used in this approach are the modified versions of those used in the method ChameleoClust. • The proposed subspace clustering method is applied to a real-life application of bi-clustering the gene expression data . Subspace clustering techniques divide the data set into various groups, where each group is represented by a subset of features known as subspace feature set, that are relevant to the objects in the group. The grouping is performed in such a way that similar objects are placed in the same group, whereas dissimilar objects are in different groups. Most of the previous subspace clustering methods have not considered an object to be a part of more than one cluster. However, in many real-life situations, an object may belong to more than one cluster. Moreover , subspace clustering algorithms developed in the past are based on single objective optimization framework which limits in optimizing only a particular shape or property of the clusters. To this end, we have developed an evolutionary-based overlapped subspace clustering method using multi-objective optimization framework. Various mutation operators have been used to explore the search space effectively. Multiple objectives that have been optimized simultaneously in this algorithm are ICC-index, MNR-index and PSM-index. The developed algorithm is evaluated with 7 real-life and 16 synthetic data sets. However, to check the efficiency of using multiple objectives, the proposed algorithm is also tested with 3 big data sets. An application of the proposed method is shown in bi-clustering the gene expression data. The results obtained using these 23 data sets and 3 big data sets are compared with many state-of-the-art algorithms. The comparative study illustrates the efficacy of the proposed algorithm over state-of-the-art algorithms." @default.
- W3132108931 created "2021-03-01" @default.
- W3132108931 creator A5029643685 @default.
- W3132108931 creator A5060797340 @default.
- W3132108931 creator A5071456183 @default.
- W3132108931 creator A5081683515 @default.
- W3132108931 date "2021-05-01" @default.
- W3132108931 modified "2023-10-16" @default.
- W3132108931 title "Evolutionary multi-objective optimization based overlapping subspace clustering" @default.
- W3132108931 cites W1968628209 @default.
- W3132108931 cites W2042035000 @default.
- W3132108931 cites W2113422929 @default.
- W3132108931 cites W2117355841 @default.
- W3132108931 cites W2126105956 @default.
- W3132108931 cites W2135105223 @default.
- W3132108931 cites W2510649342 @default.
- W3132108931 cites W2520303620 @default.
- W3132108931 cites W2594429093 @default.
- W3132108931 cites W2754987240 @default.
- W3132108931 cites W2847344707 @default.
- W3132108931 cites W2902892638 @default.
- W3132108931 cites W2947505454 @default.
- W3132108931 cites W2955192360 @default.
- W3132108931 cites W2963365696 @default.
- W3132108931 cites W3025476140 @default.
- W3132108931 cites W4251742697 @default.
- W3132108931 doi "https://doi.org/10.1016/j.patrec.2021.02.012" @default.
- W3132108931 hasPublicationYear "2021" @default.
- W3132108931 type Work @default.
- W3132108931 sameAs 3132108931 @default.
- W3132108931 citedByCount "2" @default.
- W3132108931 countsByYear W31321089312022 @default.
- W3132108931 crossrefType "journal-article" @default.
- W3132108931 hasAuthorship W3132108931A5029643685 @default.
- W3132108931 hasAuthorship W3132108931A5060797340 @default.
- W3132108931 hasAuthorship W3132108931A5071456183 @default.
- W3132108931 hasAuthorship W3132108931A5081683515 @default.
- W3132108931 hasConcept C124101348 @default.
- W3132108931 hasConcept C153180895 @default.
- W3132108931 hasConcept C154945302 @default.
- W3132108931 hasConcept C177264268 @default.
- W3132108931 hasConcept C199360897 @default.
- W3132108931 hasConcept C32834561 @default.
- W3132108931 hasConcept C33923547 @default.
- W3132108931 hasConcept C41008148 @default.
- W3132108931 hasConcept C73555534 @default.
- W3132108931 hasConcept C94641424 @default.
- W3132108931 hasConceptScore W3132108931C124101348 @default.
- W3132108931 hasConceptScore W3132108931C153180895 @default.
- W3132108931 hasConceptScore W3132108931C154945302 @default.
- W3132108931 hasConceptScore W3132108931C177264268 @default.
- W3132108931 hasConceptScore W3132108931C199360897 @default.
- W3132108931 hasConceptScore W3132108931C32834561 @default.
- W3132108931 hasConceptScore W3132108931C33923547 @default.
- W3132108931 hasConceptScore W3132108931C41008148 @default.
- W3132108931 hasConceptScore W3132108931C73555534 @default.
- W3132108931 hasConceptScore W3132108931C94641424 @default.
- W3132108931 hasLocation W31321089311 @default.
- W3132108931 hasOpenAccess W3132108931 @default.
- W3132108931 hasPrimaryLocation W31321089311 @default.
- W3132108931 hasRelatedWork W136621464 @default.
- W3132108931 hasRelatedWork W2016349419 @default.
- W3132108931 hasRelatedWork W2016708865 @default.
- W3132108931 hasRelatedWork W2036275527 @default.
- W3132108931 hasRelatedWork W2052939876 @default.
- W3132108931 hasRelatedWork W2184091243 @default.
- W3132108931 hasRelatedWork W2335924975 @default.
- W3132108931 hasRelatedWork W2370909876 @default.
- W3132108931 hasRelatedWork W2505602116 @default.
- W3132108931 hasRelatedWork W3168768270 @default.
- W3132108931 hasVolume "145" @default.
- W3132108931 isParatext "false" @default.
- W3132108931 isRetracted "false" @default.
- W3132108931 magId "3132108931" @default.
- W3132108931 workType "article" @default.