Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132127615> ?p ?o ?g. }
- W3132127615 endingPage "2047" @default.
- W3132127615 startingPage "2029" @default.
- W3132127615 abstract "This article aims to assess health habits, safety behaviors, and anxiety factors in the community during the novel coronavirus disease (COVID-19) pandemic in Saudi Arabia based on primary data collected through a questionnaire with 320 respondents. In other words, this paper aims to provide empirical insights into the correlation and the correspondence between socio-demographic factors (gender, nationality, age, citizenship factors, income, and education), and psycho-behavioral effects on individuals in response to the emergence of this new pandemic. To focus on the interaction between these variables and their effects, we suggest different methods of analysis, comprising regression trees and support vector machine regression (SVMR) algorithms. According to the regression tree results, the age variable plays a predominant role in health habits, safety behaviors, and anxiety. The health habit index, which focuses on the extent of behavioral change toward the commitment to use the health and protection methods, is highly affected by gender and age factors. The average monthly income is also a relevant factor but has contrasting effects during the COVID-19 pandemic period. The results of the SVMR model reveal a strong positive effect of income, with <i>R</i><sup>2</sup> values of 99.59%, 99.93% and 99.88% corresponding to health habits, safety behaviors, and anxiety." @default.
- W3132127615 created "2021-03-01" @default.
- W3132127615 creator A5026937315 @default.
- W3132127615 creator A5033971551 @default.
- W3132127615 creator A5057144221 @default.
- W3132127615 creator A5079932319 @default.
- W3132127615 creator A5083823839 @default.
- W3132127615 creator A5085168837 @default.
- W3132127615 date "2021-01-01" @default.
- W3132127615 modified "2023-10-01" @default.
- W3132127615 title "Modelling the Psychological Impact of COVID-19 in Saudi Arabia Using Machine Learning" @default.
- W3132127615 cites W1512710012 @default.
- W3132127615 cites W1584236903 @default.
- W3132127615 cites W1965661814 @default.
- W3132127615 cites W1970112752 @default.
- W3132127615 cites W1983865151 @default.
- W3132127615 cites W2010145446 @default.
- W3132127615 cites W2014408679 @default.
- W3132127615 cites W2016643353 @default.
- W3132127615 cites W2029670310 @default.
- W3132127615 cites W2061129444 @default.
- W3132127615 cites W2065686798 @default.
- W3132127615 cites W2069929199 @default.
- W3132127615 cites W2080218231 @default.
- W3132127615 cites W2088477804 @default.
- W3132127615 cites W2090116710 @default.
- W3132127615 cites W2104548316 @default.
- W3132127615 cites W2109266266 @default.
- W3132127615 cites W2117012826 @default.
- W3132127615 cites W2127910999 @default.
- W3132127615 cites W2146738816 @default.
- W3132127615 cites W2159306398 @default.
- W3132127615 cites W2168156818 @default.
- W3132127615 cites W2168676456 @default.
- W3132127615 cites W2534343487 @default.
- W3132127615 cites W2586350499 @default.
- W3132127615 cites W2741520013 @default.
- W3132127615 cites W2779554609 @default.
- W3132127615 cites W2918873120 @default.
- W3132127615 cites W3002539152 @default.
- W3132127615 cites W3004837187 @default.
- W3132127615 cites W3006028839 @default.
- W3132127615 cites W3006659024 @default.
- W3132127615 cites W3008213846 @default.
- W3132127615 cites W3009037202 @default.
- W3132127615 cites W3009909874 @default.
- W3132127615 cites W3010317653 @default.
- W3132127615 cites W3010839841 @default.
- W3132127615 cites W3011821664 @default.
- W3132127615 cites W3014289208 @default.
- W3132127615 cites W3014597060 @default.
- W3132127615 cites W3015197879 @default.
- W3132127615 cites W3016488464 @default.
- W3132127615 cites W3016709262 @default.
- W3132127615 cites W3022682862 @default.
- W3132127615 cites W3026419502 @default.
- W3132127615 cites W3042327455 @default.
- W3132127615 cites W4240788296 @default.
- W3132127615 cites W4242212377 @default.
- W3132127615 doi "https://doi.org/10.32604/cmc.2021.014873" @default.
- W3132127615 hasPublicationYear "2021" @default.
- W3132127615 type Work @default.
- W3132127615 sameAs 3132127615 @default.
- W3132127615 citedByCount "6" @default.
- W3132127615 countsByYear W31321276152021 @default.
- W3132127615 countsByYear W31321276152022 @default.
- W3132127615 countsByYear W31321276152023 @default.
- W3132127615 crossrefType "journal-article" @default.
- W3132127615 hasAuthorship W3132127615A5026937315 @default.
- W3132127615 hasAuthorship W3132127615A5033971551 @default.
- W3132127615 hasAuthorship W3132127615A5057144221 @default.
- W3132127615 hasAuthorship W3132127615A5079932319 @default.
- W3132127615 hasAuthorship W3132127615A5083823839 @default.
- W3132127615 hasAuthorship W3132127615A5085168837 @default.
- W3132127615 hasBestOaLocation W31321276151 @default.
- W3132127615 hasConcept C118552586 @default.
- W3132127615 hasConcept C119857082 @default.
- W3132127615 hasConcept C142724271 @default.
- W3132127615 hasConcept C152877465 @default.
- W3132127615 hasConcept C15744967 @default.
- W3132127615 hasConcept C166957645 @default.
- W3132127615 hasConcept C205649164 @default.
- W3132127615 hasConcept C2777138209 @default.
- W3132127615 hasConcept C2779134260 @default.
- W3132127615 hasConcept C3008058167 @default.
- W3132127615 hasConcept C41008148 @default.
- W3132127615 hasConcept C44670240 @default.
- W3132127615 hasConcept C524204448 @default.
- W3132127615 hasConcept C558461103 @default.
- W3132127615 hasConcept C70036468 @default.
- W3132127615 hasConcept C70410870 @default.
- W3132127615 hasConcept C71924100 @default.
- W3132127615 hasConcept C77805123 @default.
- W3132127615 hasConcept C89623803 @default.
- W3132127615 hasConceptScore W3132127615C118552586 @default.
- W3132127615 hasConceptScore W3132127615C119857082 @default.
- W3132127615 hasConceptScore W3132127615C142724271 @default.
- W3132127615 hasConceptScore W3132127615C152877465 @default.