Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132159544> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3132159544 abstract "One of the most important problems of text processing systems is the word mismatch problem. This results in limited access to the required information in information retrieval. This problem occurs in analyzing textual data such as news, or low accuracy in text classification and clustering. In this case, if the text-processing engine does not use similar/related words in the same sense, it may not be able to guide you to the appropriate result.Various statistical techniques have been proposed to bridge the vocabulary gap problem; e.g., if two words are used in similar contexts frequently, they have similar/related meanings. Synonym and similar words, however, are only one of the categories of related words that are expected to be captured by statistical approaches. Another category of related words is the pair of an original word in one language and its transliteration from another language. This kind of related words is common in non-English languages. In non-English texts, instead of using the original word from the target language, the writer may borrow the English word and only transliterate it to the target language. Since this kind of writing style is used in limited texts, the frequency of transliterated words is not as high as original words. As a result, available corpus-based techniques are not able to capture their concept. In this article, we propose two different approaches to overcome this problem: (1) using neural network-based transliteration, (2) using available tools that are used for machine translation/transliteration, such as Google Translate and Behnevis. Our experiments on a dataset, which is provided for this purpose, shows that the combination of the two approaches can detect English words with 89.39% accuracy." @default.
- W3132159544 created "2021-03-01" @default.
- W3132159544 creator A5011973676 @default.
- W3132159544 creator A5015201403 @default.
- W3132159544 date "2020-08-27" @default.
- W3132159544 modified "2023-09-26" @default.
- W3132159544 title "Recognizing Transliterated English Words in Persian Texts" @default.
- W3132159544 cites W1632114991 @default.
- W3132159544 cites W2003154243 @default.
- W3132159544 cites W2044565013 @default.
- W3132159544 cites W2076063813 @default.
- W3132159544 cites W2778001237 @default.
- W3132159544 cites W2798610972 @default.
- W3132159544 cites W2962824709 @default.
- W3132159544 cites W2963172394 @default.
- W3132159544 cites W2963971085 @default.
- W3132159544 doi "https://doi.org/10.29252/jist.8.30.84" @default.
- W3132159544 hasPublicationYear "2020" @default.
- W3132159544 type Work @default.
- W3132159544 sameAs 3132159544 @default.
- W3132159544 citedByCount "0" @default.
- W3132159544 crossrefType "journal-article" @default.
- W3132159544 hasAuthorship W3132159544A5011973676 @default.
- W3132159544 hasAuthorship W3132159544A5015201403 @default.
- W3132159544 hasBestOaLocation W31321595441 @default.
- W3132159544 hasConcept C138885662 @default.
- W3132159544 hasConcept C154945302 @default.
- W3132159544 hasConcept C188338183 @default.
- W3132159544 hasConcept C203005215 @default.
- W3132159544 hasConcept C204321447 @default.
- W3132159544 hasConcept C2777601683 @default.
- W3132159544 hasConcept C34736171 @default.
- W3132159544 hasConcept C41008148 @default.
- W3132159544 hasConcept C41895202 @default.
- W3132159544 hasConcept C520968082 @default.
- W3132159544 hasConcept C73555534 @default.
- W3132159544 hasConcept C90805587 @default.
- W3132159544 hasConceptScore W3132159544C138885662 @default.
- W3132159544 hasConceptScore W3132159544C154945302 @default.
- W3132159544 hasConceptScore W3132159544C188338183 @default.
- W3132159544 hasConceptScore W3132159544C203005215 @default.
- W3132159544 hasConceptScore W3132159544C204321447 @default.
- W3132159544 hasConceptScore W3132159544C2777601683 @default.
- W3132159544 hasConceptScore W3132159544C34736171 @default.
- W3132159544 hasConceptScore W3132159544C41008148 @default.
- W3132159544 hasConceptScore W3132159544C41895202 @default.
- W3132159544 hasConceptScore W3132159544C520968082 @default.
- W3132159544 hasConceptScore W3132159544C73555534 @default.
- W3132159544 hasConceptScore W3132159544C90805587 @default.
- W3132159544 hasLocation W31321595441 @default.
- W3132159544 hasOpenAccess W3132159544 @default.
- W3132159544 hasPrimaryLocation W31321595441 @default.
- W3132159544 hasRelatedWork W11918290 @default.
- W3132159544 hasRelatedWork W13028438 @default.
- W3132159544 hasRelatedWork W1713284 @default.
- W3132159544 hasRelatedWork W1745277 @default.
- W3132159544 hasRelatedWork W3340393 @default.
- W3132159544 hasRelatedWork W5412852 @default.
- W3132159544 hasRelatedWork W617367 @default.
- W3132159544 hasRelatedWork W8656495 @default.
- W3132159544 hasRelatedWork W3030169 @default.
- W3132159544 hasRelatedWork W4823908 @default.
- W3132159544 isParatext "false" @default.
- W3132159544 isRetracted "false" @default.
- W3132159544 magId "3132159544" @default.
- W3132159544 workType "article" @default.