Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132192521> ?p ?o ?g. }
- W3132192521 endingPage "107105" @default.
- W3132192521 startingPage "107105" @default.
- W3132192521 abstract "This paper presents a method based on convolutional neural network (CNN) for classifying workmanship defects located in 36 kV cross-linked polyethylene (XLPE) cable terminations. The main contributions of the study are to differentiate the poor workmanship defects without a hand-crafted feature extraction process, and to propose a new input type for the partial discharge (PD) recognition algorithm. Experiments are carried out on two different datasets, each of which has five typical cable termination defects. A database comprised of 1200 phase-resolved partial discharge (PRPD) defect patterns are generated, and each PRPD fingerprint recorded for 30 s is converted into an RGB image for inputting them to the CNN. Three case studies are created to increase the robustness of the algorithm by using the two datasets. The algorithm hyperparameters are optimized to improve the performance of CNN. Finally, the proposed method is compared with the state-of-art CNN algorithms used in the literature. The results show that the proposed method is viable for determining the types of potential defects in the cable terminations." @default.
- W3132192521 created "2021-03-01" @default.
- W3132192521 creator A5028090402 @default.
- W3132192521 creator A5029991561 @default.
- W3132192521 creator A5077914212 @default.
- W3132192521 date "2021-05-01" @default.
- W3132192521 modified "2023-10-17" @default.
- W3132192521 title "Workmanship defect classification in medium voltage cable terminations with convolutional neural network" @default.
- W3132192521 cites W2006647729 @default.
- W3132192521 cites W2017133514 @default.
- W3132192521 cites W2105998701 @default.
- W3132192521 cites W2112796928 @default.
- W3132192521 cites W2135293599 @default.
- W3132192521 cites W2155176760 @default.
- W3132192521 cites W2478564372 @default.
- W3132192521 cites W2618530766 @default.
- W3132192521 cites W2769204531 @default.
- W3132192521 cites W2789289179 @default.
- W3132192521 cites W2798915202 @default.
- W3132192521 cites W2812096095 @default.
- W3132192521 cites W2887305071 @default.
- W3132192521 cites W2891889992 @default.
- W3132192521 cites W2896357121 @default.
- W3132192521 cites W2909400870 @default.
- W3132192521 cites W2918117471 @default.
- W3132192521 cites W2919358988 @default.
- W3132192521 cites W2921736909 @default.
- W3132192521 cites W2946044205 @default.
- W3132192521 cites W2950444251 @default.
- W3132192521 cites W2953928707 @default.
- W3132192521 cites W2954894921 @default.
- W3132192521 cites W2963195150 @default.
- W3132192521 cites W2979196420 @default.
- W3132192521 cites W3006915077 @default.
- W3132192521 cites W3035107441 @default.
- W3132192521 cites W3091704112 @default.
- W3132192521 cites W3110754121 @default.
- W3132192521 cites W2944830873 @default.
- W3132192521 doi "https://doi.org/10.1016/j.epsr.2021.107105" @default.
- W3132192521 hasPublicationYear "2021" @default.
- W3132192521 type Work @default.
- W3132192521 sameAs 3132192521 @default.
- W3132192521 citedByCount "11" @default.
- W3132192521 countsByYear W31321925212022 @default.
- W3132192521 countsByYear W31321925212023 @default.
- W3132192521 crossrefType "journal-article" @default.
- W3132192521 hasAuthorship W3132192521A5028090402 @default.
- W3132192521 hasAuthorship W3132192521A5029991561 @default.
- W3132192521 hasAuthorship W3132192521A5077914212 @default.
- W3132192521 hasConcept C104317684 @default.
- W3132192521 hasConcept C119599485 @default.
- W3132192521 hasConcept C127413603 @default.
- W3132192521 hasConcept C130143024 @default.
- W3132192521 hasConcept C153180895 @default.
- W3132192521 hasConcept C154945302 @default.
- W3132192521 hasConcept C165801399 @default.
- W3132192521 hasConcept C185592680 @default.
- W3132192521 hasConcept C21547014 @default.
- W3132192521 hasConcept C2776232490 @default.
- W3132192521 hasConcept C41008148 @default.
- W3132192521 hasConcept C50644808 @default.
- W3132192521 hasConcept C52622490 @default.
- W3132192521 hasConcept C55493867 @default.
- W3132192521 hasConcept C63479239 @default.
- W3132192521 hasConcept C81363708 @default.
- W3132192521 hasConceptScore W3132192521C104317684 @default.
- W3132192521 hasConceptScore W3132192521C119599485 @default.
- W3132192521 hasConceptScore W3132192521C127413603 @default.
- W3132192521 hasConceptScore W3132192521C130143024 @default.
- W3132192521 hasConceptScore W3132192521C153180895 @default.
- W3132192521 hasConceptScore W3132192521C154945302 @default.
- W3132192521 hasConceptScore W3132192521C165801399 @default.
- W3132192521 hasConceptScore W3132192521C185592680 @default.
- W3132192521 hasConceptScore W3132192521C21547014 @default.
- W3132192521 hasConceptScore W3132192521C2776232490 @default.
- W3132192521 hasConceptScore W3132192521C41008148 @default.
- W3132192521 hasConceptScore W3132192521C50644808 @default.
- W3132192521 hasConceptScore W3132192521C52622490 @default.
- W3132192521 hasConceptScore W3132192521C55493867 @default.
- W3132192521 hasConceptScore W3132192521C63479239 @default.
- W3132192521 hasConceptScore W3132192521C81363708 @default.
- W3132192521 hasLocation W31321925211 @default.
- W3132192521 hasOpenAccess W3132192521 @default.
- W3132192521 hasPrimaryLocation W31321925211 @default.
- W3132192521 hasRelatedWork W1964120219 @default.
- W3132192521 hasRelatedWork W2144059113 @default.
- W3132192521 hasRelatedWork W2146076056 @default.
- W3132192521 hasRelatedWork W2406522397 @default.
- W3132192521 hasRelatedWork W2767651786 @default.
- W3132192521 hasRelatedWork W2811390910 @default.
- W3132192521 hasRelatedWork W2913302899 @default.
- W3132192521 hasRelatedWork W3003836766 @default.
- W3132192521 hasRelatedWork W4312376745 @default.
- W3132192521 hasRelatedWork W4385415357 @default.
- W3132192521 hasVolume "194" @default.
- W3132192521 isParatext "false" @default.
- W3132192521 isRetracted "false" @default.
- W3132192521 magId "3132192521" @default.