Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132199318> ?p ?o ?g. }
- W3132199318 endingPage "4335" @default.
- W3132199318 startingPage "4312" @default.
- W3132199318 abstract "Earthquake hazards cause changes in landforms, economic losses, and human casualties. Seismic Vulnerability Mapping (SVM) is key information to prevent and predict the damage of earthquakes. The purpose of this study is to train and compare the results of the Classification Tree Analysis (CTA) learner model with three Gini, Entropy, Ratio split algorithms, and Fuzzy ARTMAP (FAM) model by the development of hybrid models for SVM. The Seismic Vulnerability Conditioning Factors (SVCFs) such as environmental, physical, and social were selected using experts' opinions and experience. Thirteen factors were edited and prepared as the seismic vulnerability conditioning factors (SVCFs) used in this study. In order to seismic vulnerability mapping and models training, a database of training sites was created by the Multi-Criteria Decision Analysis-Multi-Criteria Evaluation (MCDA-MCE) hybrid process. Then, 70% of the points were used for training and 30% were used to validate the models' results based on the holdout method. Moreover, Relative Operating Characteristics (ROC), Seismic Relative Index (SRI), and Frequency Ratio (FR) were used to validate the results. The Area under the curve (AUC) for the algorithms Gini, Entropy, Ratio, and FAM model are 0.895, 0.890, 0.876, and 0.783, respectively. The results of the three validation methods show the highest performance for the Gini splitting algorithm. Accordingly, the percentage of social and physical vulnerability of Sanandaj city was determined based on the MCE-Gini optimal model: 27% of the area and 62% of the population of Sanandaj are under high vulnerability to earthquakes. So that, various factors such as worn urban texture, high population density and environmental factors were among the most important factors affecting seismic vulnerability." @default.
- W3132199318 created "2021-03-01" @default.
- W3132199318 creator A5012801475 @default.
- W3132199318 creator A5028765261 @default.
- W3132199318 creator A5051171820 @default.
- W3132199318 creator A5085115937 @default.
- W3132199318 creator A5090671205 @default.
- W3132199318 date "2021-03-08" @default.
- W3132199318 modified "2023-10-09" @default.
- W3132199318 title "GIS-based seismic vulnerability mapping: a comparison of artificial neural networks hybrid models" @default.
- W3132199318 cites W1492272144 @default.
- W3132199318 cites W1627411586 @default.
- W3132199318 cites W166542036 @default.
- W3132199318 cites W1966757792 @default.
- W3132199318 cites W1979110691 @default.
- W3132199318 cites W2015857587 @default.
- W3132199318 cites W2035466979 @default.
- W3132199318 cites W2035771071 @default.
- W3132199318 cites W2054036854 @default.
- W3132199318 cites W2060907774 @default.
- W3132199318 cites W2099534828 @default.
- W3132199318 cites W2106078845 @default.
- W3132199318 cites W2110323139 @default.
- W3132199318 cites W2121795775 @default.
- W3132199318 cites W2121943809 @default.
- W3132199318 cites W2138603855 @default.
- W3132199318 cites W2144219012 @default.
- W3132199318 cites W2155595790 @default.
- W3132199318 cites W2158698691 @default.
- W3132199318 cites W2160127103 @default.
- W3132199318 cites W2161793023 @default.
- W3132199318 cites W2170793091 @default.
- W3132199318 cites W2174826014 @default.
- W3132199318 cites W2285696968 @default.
- W3132199318 cites W2586927742 @default.
- W3132199318 cites W2590596515 @default.
- W3132199318 cites W2607156659 @default.
- W3132199318 cites W2744229080 @default.
- W3132199318 cites W2765544393 @default.
- W3132199318 cites W2766819020 @default.
- W3132199318 cites W2771285114 @default.
- W3132199318 cites W2789198790 @default.
- W3132199318 cites W2792263248 @default.
- W3132199318 cites W2803052765 @default.
- W3132199318 cites W2809409513 @default.
- W3132199318 cites W2811265852 @default.
- W3132199318 cites W2811512596 @default.
- W3132199318 cites W2866327061 @default.
- W3132199318 cites W2884113983 @default.
- W3132199318 cites W2884673174 @default.
- W3132199318 cites W2893802547 @default.
- W3132199318 cites W2910199948 @default.
- W3132199318 cites W2912323688 @default.
- W3132199318 cites W2913804864 @default.
- W3132199318 cites W2913844254 @default.
- W3132199318 cites W2914068061 @default.
- W3132199318 cites W2914180715 @default.
- W3132199318 cites W2922001303 @default.
- W3132199318 cites W2929083129 @default.
- W3132199318 cites W2934858096 @default.
- W3132199318 cites W2936509357 @default.
- W3132199318 cites W2936617453 @default.
- W3132199318 cites W2943520233 @default.
- W3132199318 cites W2947644699 @default.
- W3132199318 cites W2949042038 @default.
- W3132199318 cites W2990351932 @default.
- W3132199318 cites W2995104057 @default.
- W3132199318 cites W3004761173 @default.
- W3132199318 cites W3005492664 @default.
- W3132199318 cites W3006292245 @default.
- W3132199318 cites W3009974024 @default.
- W3132199318 cites W3012822150 @default.
- W3132199318 cites W3021951793 @default.
- W3132199318 cites W3022069347 @default.
- W3132199318 cites W3037147010 @default.
- W3132199318 cites W3038730201 @default.
- W3132199318 cites W3043258706 @default.
- W3132199318 cites W3047900803 @default.
- W3132199318 cites W3106482122 @default.
- W3132199318 cites W3121354442 @default.
- W3132199318 cites W4230468347 @default.
- W3132199318 doi "https://doi.org/10.1080/10106049.2021.1892208" @default.
- W3132199318 hasPublicationYear "2021" @default.
- W3132199318 type Work @default.
- W3132199318 sameAs 3132199318 @default.
- W3132199318 citedByCount "6" @default.
- W3132199318 countsByYear W31321993182021 @default.
- W3132199318 countsByYear W31321993182022 @default.
- W3132199318 countsByYear W31321993182023 @default.
- W3132199318 crossrefType "journal-article" @default.
- W3132199318 hasAuthorship W3132199318A5012801475 @default.
- W3132199318 hasAuthorship W3132199318A5028765261 @default.
- W3132199318 hasAuthorship W3132199318A5051171820 @default.
- W3132199318 hasAuthorship W3132199318A5085115937 @default.
- W3132199318 hasAuthorship W3132199318A5090671205 @default.
- W3132199318 hasConcept C105795698 @default.
- W3132199318 hasConcept C11105738 @default.
- W3132199318 hasConcept C119857082 @default.