Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132199788> ?p ?o ?g. }
- W3132199788 endingPage "3105" @default.
- W3132199788 startingPage "3087" @default.
- W3132199788 abstract "Intrusion detection systems are widely implemented to protect computer networks from threats. To identify unknown attacks, many machine learning algorithms like neural networks have been explored for anomaly based detection. However, in real-world applications, the performance of classifiers might be fluctuant with different data sets, while one main reason is due to some redundant or ineffective features. To mitigate this issue, this study investigates some feature selection methods and introduces an ensemble of Neural Networks and Random Forest to improve the detection performance. In particular, we design an intelligent system that can choose an appropriate algorithm in an adaptive way. In the evaluation, we study the feasibility of our approach with KDD99 data set and evaluate its practical performance with a real data set collected from a Honeynet environment. The experimental results indicate that as compared with similar approaches, our approach can overall provide a better result, through identifying important and closely related features." @default.
- W3132199788 created "2021-03-01" @default.
- W3132199788 creator A5077291880 @default.
- W3132199788 creator A5081389138 @default.
- W3132199788 date "2021-02-24" @default.
- W3132199788 modified "2023-09-30" @default.
- W3132199788 title "Enhancing intrusion detection with feature selection and neural network" @default.
- W3132199788 cites W1419708139 @default.
- W3132199788 cites W1480376833 @default.
- W3132199788 cites W1496908738 @default.
- W3132199788 cites W1516506771 @default.
- W3132199788 cites W1517426182 @default.
- W3132199788 cites W1537426656 @default.
- W3132199788 cites W1549151329 @default.
- W3132199788 cites W1554891714 @default.
- W3132199788 cites W1583353573 @default.
- W3132199788 cites W1597524601 @default.
- W3132199788 cites W1601518381 @default.
- W3132199788 cites W1603184376 @default.
- W3132199788 cites W1606311442 @default.
- W3132199788 cites W1828648156 @default.
- W3132199788 cites W1871993265 @default.
- W3132199788 cites W1977264295 @default.
- W3132199788 cites W1984925426 @default.
- W3132199788 cites W2052387539 @default.
- W3132199788 cites W2060392206 @default.
- W3132199788 cites W2065523140 @default.
- W3132199788 cites W2098637805 @default.
- W3132199788 cites W2112709201 @default.
- W3132199788 cites W2118402894 @default.
- W3132199788 cites W2122217421 @default.
- W3132199788 cites W2128302979 @default.
- W3132199788 cites W2150772902 @default.
- W3132199788 cites W2169038408 @default.
- W3132199788 cites W2432038293 @default.
- W3132199788 cites W2552899443 @default.
- W3132199788 cites W2594348459 @default.
- W3132199788 cites W2803414046 @default.
- W3132199788 cites W2888004143 @default.
- W3132199788 cites W2901492899 @default.
- W3132199788 cites W2904539465 @default.
- W3132199788 cites W2910774907 @default.
- W3132199788 cites W2911964244 @default.
- W3132199788 cites W2947334153 @default.
- W3132199788 cites W2954535343 @default.
- W3132199788 cites W2994866269 @default.
- W3132199788 cites W3004777721 @default.
- W3132199788 cites W3009422166 @default.
- W3132199788 cites W3014732532 @default.
- W3132199788 cites W3021219025 @default.
- W3132199788 cites W3047132966 @default.
- W3132199788 cites W60934498 @default.
- W3132199788 doi "https://doi.org/10.1002/int.22397" @default.
- W3132199788 hasPublicationYear "2021" @default.
- W3132199788 type Work @default.
- W3132199788 sameAs 3132199788 @default.
- W3132199788 citedByCount "34" @default.
- W3132199788 countsByYear W31321997882021 @default.
- W3132199788 countsByYear W31321997882022 @default.
- W3132199788 countsByYear W31321997882023 @default.
- W3132199788 crossrefType "journal-article" @default.
- W3132199788 hasAuthorship W3132199788A5077291880 @default.
- W3132199788 hasAuthorship W3132199788A5081389138 @default.
- W3132199788 hasBestOaLocation W31321997881 @default.
- W3132199788 hasConcept C119857082 @default.
- W3132199788 hasConcept C124101348 @default.
- W3132199788 hasConcept C137524506 @default.
- W3132199788 hasConcept C138885662 @default.
- W3132199788 hasConcept C148483581 @default.
- W3132199788 hasConcept C154945302 @default.
- W3132199788 hasConcept C169258074 @default.
- W3132199788 hasConcept C177264268 @default.
- W3132199788 hasConcept C199360897 @default.
- W3132199788 hasConcept C2776401178 @default.
- W3132199788 hasConcept C35525427 @default.
- W3132199788 hasConcept C41008148 @default.
- W3132199788 hasConcept C41895202 @default.
- W3132199788 hasConcept C50644808 @default.
- W3132199788 hasConcept C739882 @default.
- W3132199788 hasConcept C81917197 @default.
- W3132199788 hasConceptScore W3132199788C119857082 @default.
- W3132199788 hasConceptScore W3132199788C124101348 @default.
- W3132199788 hasConceptScore W3132199788C137524506 @default.
- W3132199788 hasConceptScore W3132199788C138885662 @default.
- W3132199788 hasConceptScore W3132199788C148483581 @default.
- W3132199788 hasConceptScore W3132199788C154945302 @default.
- W3132199788 hasConceptScore W3132199788C169258074 @default.
- W3132199788 hasConceptScore W3132199788C177264268 @default.
- W3132199788 hasConceptScore W3132199788C199360897 @default.
- W3132199788 hasConceptScore W3132199788C2776401178 @default.
- W3132199788 hasConceptScore W3132199788C35525427 @default.
- W3132199788 hasConceptScore W3132199788C41008148 @default.
- W3132199788 hasConceptScore W3132199788C41895202 @default.
- W3132199788 hasConceptScore W3132199788C50644808 @default.
- W3132199788 hasConceptScore W3132199788C739882 @default.
- W3132199788 hasConceptScore W3132199788C81917197 @default.
- W3132199788 hasIssue "7" @default.
- W3132199788 hasLocation W31321997881 @default.