Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132232584> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3132232584 abstract "Music is closely related to human life and is an important way for people to express their feelings in life. Deep neural networks have played a significant role in the field of music processing. There are many different neural network models to implement deep learning for audio processing. For general neural networks, there are problems such as complex operation and slow computing speed. In this paper, we introduce Long Short-Term Memory (LSTM), which is a circulating neural network, to realize end-to-end training. The network structure is simple and can generate better audio sequences after the training model. After music generation, human voice conversion is important for music understanding and inserting lyrics to pure music. We propose the audio segmentation technology for segmenting the fixed length of the human voice. Different notes are classified through piano music without considering the scale and are correlated with the different human voices we get. Finally, through the transformation, we can express the generated piano music through the output of the human voice. Experimental results demonstrate that the proposed scheme can successfully obtain a human voice from pure piano Music generated by LSTM." @default.
- W3132232584 created "2021-03-01" @default.
- W3132232584 creator A5008576392 @default.
- W3132232584 creator A5009582696 @default.
- W3132232584 creator A5014898916 @default.
- W3132232584 creator A5018533015 @default.
- W3132232584 date "2021-01-01" @default.
- W3132232584 modified "2023-09-25" @default.
- W3132232584 title "Music generation and human voice conversion based on LSTM" @default.
- W3132232584 cites W1965154800 @default.
- W3132232584 cites W2112739286 @default.
- W3132232584 cites W2912259457 @default.
- W3132232584 cites W2949950073 @default.
- W3132232584 cites W2973671566 @default.
- W3132232584 cites W2999737480 @default.
- W3132232584 cites W3006442473 @default.
- W3132232584 doi "https://doi.org/10.1051/matecconf/202133606015" @default.
- W3132232584 hasPublicationYear "2021" @default.
- W3132232584 type Work @default.
- W3132232584 sameAs 3132232584 @default.
- W3132232584 citedByCount "1" @default.
- W3132232584 countsByYear W31322325842023 @default.
- W3132232584 crossrefType "journal-article" @default.
- W3132232584 hasAuthorship W3132232584A5008576392 @default.
- W3132232584 hasAuthorship W3132232584A5009582696 @default.
- W3132232584 hasAuthorship W3132232584A5014898916 @default.
- W3132232584 hasAuthorship W3132232584A5018533015 @default.
- W3132232584 hasBestOaLocation W31322325841 @default.
- W3132232584 hasConcept C104317684 @default.
- W3132232584 hasConcept C108583219 @default.
- W3132232584 hasConcept C124086623 @default.
- W3132232584 hasConcept C124952713 @default.
- W3132232584 hasConcept C134306372 @default.
- W3132232584 hasConcept C142362112 @default.
- W3132232584 hasConcept C154945302 @default.
- W3132232584 hasConcept C185592680 @default.
- W3132232584 hasConcept C202444582 @default.
- W3132232584 hasConcept C204241405 @default.
- W3132232584 hasConcept C2776436406 @default.
- W3132232584 hasConcept C28490314 @default.
- W3132232584 hasConcept C33923547 @default.
- W3132232584 hasConcept C41008148 @default.
- W3132232584 hasConcept C50644808 @default.
- W3132232584 hasConcept C52119013 @default.
- W3132232584 hasConcept C55493867 @default.
- W3132232584 hasConcept C77618280 @default.
- W3132232584 hasConcept C89600930 @default.
- W3132232584 hasConcept C9652623 @default.
- W3132232584 hasConceptScore W3132232584C104317684 @default.
- W3132232584 hasConceptScore W3132232584C108583219 @default.
- W3132232584 hasConceptScore W3132232584C124086623 @default.
- W3132232584 hasConceptScore W3132232584C124952713 @default.
- W3132232584 hasConceptScore W3132232584C134306372 @default.
- W3132232584 hasConceptScore W3132232584C142362112 @default.
- W3132232584 hasConceptScore W3132232584C154945302 @default.
- W3132232584 hasConceptScore W3132232584C185592680 @default.
- W3132232584 hasConceptScore W3132232584C202444582 @default.
- W3132232584 hasConceptScore W3132232584C204241405 @default.
- W3132232584 hasConceptScore W3132232584C2776436406 @default.
- W3132232584 hasConceptScore W3132232584C28490314 @default.
- W3132232584 hasConceptScore W3132232584C33923547 @default.
- W3132232584 hasConceptScore W3132232584C41008148 @default.
- W3132232584 hasConceptScore W3132232584C50644808 @default.
- W3132232584 hasConceptScore W3132232584C52119013 @default.
- W3132232584 hasConceptScore W3132232584C55493867 @default.
- W3132232584 hasConceptScore W3132232584C77618280 @default.
- W3132232584 hasConceptScore W3132232584C89600930 @default.
- W3132232584 hasConceptScore W3132232584C9652623 @default.
- W3132232584 hasLocation W31322325841 @default.
- W3132232584 hasLocation W31322325842 @default.
- W3132232584 hasOpenAccess W3132232584 @default.
- W3132232584 hasPrimaryLocation W31322325841 @default.
- W3132232584 hasRelatedWork W11074920 @default.
- W3132232584 hasRelatedWork W11798771 @default.
- W3132232584 hasRelatedWork W12768380 @default.
- W3132232584 hasRelatedWork W13270548 @default.
- W3132232584 hasRelatedWork W14769199 @default.
- W3132232584 hasRelatedWork W1919069 @default.
- W3132232584 hasRelatedWork W2308727 @default.
- W3132232584 hasRelatedWork W3310707 @default.
- W3132232584 hasRelatedWork W7946549 @default.
- W3132232584 hasRelatedWork W9608463 @default.
- W3132232584 isParatext "false" @default.
- W3132232584 isRetracted "false" @default.
- W3132232584 magId "3132232584" @default.
- W3132232584 workType "article" @default.