Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132234269> ?p ?o ?g. }
- W3132234269 endingPage "4905" @default.
- W3132234269 startingPage "4898" @default.
- W3132234269 abstract "With the revolutionising of the industry to the next generations, machines have become more complicated. If they are not put to regular maintenance then there is more breakdown and disruption in the production line. These days, data science techniques have applications over almost every field and likewise are being applied to Industry 4.0. In this advanced setup, massive data is created and stored every second. Experts with expertise in advanced mathematical and computational skills are in demand to identify root causes of failures and quality deviations of a machine, contributing to minimising a loss in time and money. Moreover, new elements with tailored properties can be discovered with material theories and computational skills. The integration of data science with industry 4.0 will increase efficiency and will be helpful to predict the quality of material minimising the production line cost and time. Different research articles on industry 4.0, data science and predictive maintenance are identified and studied. This paper identifies five critical processes of data scientists for predictive maintenance and discussed briefly through a literature review. Data science uses various processes, scientific methods, and algorithms to extract knowledge from a large amount of data. It can collect a massive amount of industrial data, which is further used to improve the manufacturing systems' efficiency and reliability. It helps analyse the data and become essential for Industry 4.0." @default.
- W3132234269 created "2021-03-01" @default.
- W3132234269 creator A5001731771 @default.
- W3132234269 creator A5011107364 @default.
- W3132234269 creator A5019910861 @default.
- W3132234269 creator A5084382369 @default.
- W3132234269 creator A5087686222 @default.
- W3132234269 creator A5087753039 @default.
- W3132234269 date "2021-01-01" @default.
- W3132234269 modified "2023-10-16" @default.
- W3132234269 title "Data science applications for predictive maintenance and materials science in context to Industry 4.0" @default.
- W3132234269 cites W1992985800 @default.
- W3132234269 cites W2045916336 @default.
- W3132234269 cites W2068884917 @default.
- W3132234269 cites W2098386318 @default.
- W3132234269 cites W2180345992 @default.
- W3132234269 cites W2217215589 @default.
- W3132234269 cites W2274653328 @default.
- W3132234269 cites W2337110853 @default.
- W3132234269 cites W2343765925 @default.
- W3132234269 cites W2463813940 @default.
- W3132234269 cites W2514134446 @default.
- W3132234269 cites W2530337018 @default.
- W3132234269 cites W2548108532 @default.
- W3132234269 cites W2554781611 @default.
- W3132234269 cites W2568014457 @default.
- W3132234269 cites W2571177500 @default.
- W3132234269 cites W2589842731 @default.
- W3132234269 cites W2589930885 @default.
- W3132234269 cites W2602722581 @default.
- W3132234269 cites W2607234710 @default.
- W3132234269 cites W2620247453 @default.
- W3132234269 cites W2750984989 @default.
- W3132234269 cites W2765241504 @default.
- W3132234269 cites W2765913117 @default.
- W3132234269 cites W2790282462 @default.
- W3132234269 cites W2893920544 @default.
- W3132234269 cites W2894206882 @default.
- W3132234269 cites W2910889509 @default.
- W3132234269 cites W2922314011 @default.
- W3132234269 cites W2956130576 @default.
- W3132234269 cites W2971126969 @default.
- W3132234269 cites W2971432658 @default.
- W3132234269 cites W2972137370 @default.
- W3132234269 cites W2972285628 @default.
- W3132234269 cites W2989829749 @default.
- W3132234269 cites W2997464811 @default.
- W3132234269 cites W3005509149 @default.
- W3132234269 cites W3010699970 @default.
- W3132234269 cites W3016258185 @default.
- W3132234269 cites W3017623177 @default.
- W3132234269 cites W3021248054 @default.
- W3132234269 cites W3022420968 @default.
- W3132234269 cites W3022667207 @default.
- W3132234269 cites W3023398824 @default.
- W3132234269 cites W3025403314 @default.
- W3132234269 cites W3027862127 @default.
- W3132234269 cites W3034493768 @default.
- W3132234269 cites W3045935064 @default.
- W3132234269 cites W3048290301 @default.
- W3132234269 cites W3090363122 @default.
- W3132234269 cites W3092012490 @default.
- W3132234269 cites W3092049906 @default.
- W3132234269 cites W3094424197 @default.
- W3132234269 cites W3095217282 @default.
- W3132234269 cites W3097589033 @default.
- W3132234269 cites W3100366369 @default.
- W3132234269 cites W3101689280 @default.
- W3132234269 cites W3113205299 @default.
- W3132234269 cites W3113544505 @default.
- W3132234269 cites W3121452939 @default.
- W3132234269 cites W3215186461 @default.
- W3132234269 cites W4244382252 @default.
- W3132234269 cites W4249382463 @default.
- W3132234269 doi "https://doi.org/10.1016/j.matpr.2021.01.357" @default.
- W3132234269 hasPublicationYear "2021" @default.
- W3132234269 type Work @default.
- W3132234269 sameAs 3132234269 @default.
- W3132234269 citedByCount "40" @default.
- W3132234269 countsByYear W31322342692021 @default.
- W3132234269 countsByYear W31322342692022 @default.
- W3132234269 countsByYear W31322342692023 @default.
- W3132234269 crossrefType "journal-article" @default.
- W3132234269 hasAuthorship W3132234269A5001731771 @default.
- W3132234269 hasAuthorship W3132234269A5011107364 @default.
- W3132234269 hasAuthorship W3132234269A5019910861 @default.
- W3132234269 hasAuthorship W3132234269A5084382369 @default.
- W3132234269 hasAuthorship W3132234269A5087686222 @default.
- W3132234269 hasAuthorship W3132234269A5087753039 @default.
- W3132234269 hasConcept C111472728 @default.
- W3132234269 hasConcept C112930515 @default.
- W3132234269 hasConcept C121332964 @default.
- W3132234269 hasConcept C127413603 @default.
- W3132234269 hasConcept C13736549 @default.
- W3132234269 hasConcept C138885662 @default.
- W3132234269 hasConcept C139719470 @default.
- W3132234269 hasConcept C144133560 @default.
- W3132234269 hasConcept C151730666 @default.