Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132342070> ?p ?o ?g. }
- W3132342070 endingPage "107906" @default.
- W3132342070 startingPage "107906" @default.
- W3132342070 abstract "We present STREAmS, an in-house high-fidelity solver for direct numerical simulations (DNS) of canonical compressible wall-bounded flows, namely turbulent plane channel, zero-pressure gradient turbulent boundary layer and supersonic oblique shock-wave/boundary layer interaction. The solver incorporates state-of-the-art numerical algorithms, specifically designed to cope with the challenging problems associated with the solution of high-speed turbulent flows and can be used across a wide range of Mach numbers , extending from the low subsonic up to the hypersonic regime. From the computational viewpoint, STREAmS is oriented to modern HPC platforms thanks to MPI parallelization and the ability to run on multi-GPU architectures. This paper discusses the main implementation strategies, with particular reference to the CUDA paradigm, the management of a single code for traditional and multi-GPU architectures, and the optimization process to take advantage of the latest generation of NVIDIA GPUs. Performance measurements show that single-GPU optimization more than halves the computing time as compared to the baseline version. At the same time, the asynchronous patterns implemented in STREAmS for MPI communications guarantee very good parallel performance especially in the weak scaling spirit, with efficiency exceeding 97% on 1024 GPUs. For overall evaluation of STREAmS with respect to other compressible solvers, comparison with a recent GPU-enabled community solver is presented. It turns out that, although STREAmS is much more limited in terms of flow configurations that can be addressed, the advantage in terms of accuracy, computing time and memory occupation is substantial, which makes it an ideal candidate for large-scale simulations of high-Reynolds number, compressible wall-bounded turbulent flows. The solver is released open source under GPLv3 license. Program Title: STREAmS CPC Library link to program files: https://doi.org/10.17632/hdcgjpzr3y.1 Developer’s repository link: https://github.com/matteobernardini/STREAmS Code Ocean capsule: https://codeocean.com/capsule/8931507/tree/v2 Licensing provisions: GPLv3 Programming language: Fortran 90, CUDA Fortran, MPI Nature of problem: Solving the three-dimensional compressible Navier–Stokes equations for low and high Mach regimes in a Cartesian domain configured for channel, boundary layer or shock-boundary layer interaction flows. Solution method: The convective terms are discretized using a hybrid energy-conservative shock-capturing scheme in locally conservative form. Shock-capturing capabilities rely on the use of Lax–Friedrichs flux vector splitting and weighted essentially non-oscillatory (WENO) reconstruction. The system is advanced in time using a three-stage, third-order RK scheme. Two-dimensional pencil distributed MPI parallelization is implemented alongside different patterns of GPU (CUDA Fortran) accelerated routines." @default.
- W3132342070 created "2021-03-01" @default.
- W3132342070 creator A5040636094 @default.
- W3132342070 creator A5069613322 @default.
- W3132342070 creator A5071316495 @default.
- W3132342070 creator A5082664241 @default.
- W3132342070 date "2021-06-01" @default.
- W3132342070 modified "2023-10-13" @default.
- W3132342070 title "STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows" @default.
- W3132342070 cites W1966043329 @default.
- W3132342070 cites W1966158133 @default.
- W3132342070 cites W1972119727 @default.
- W3132342070 cites W1988916147 @default.
- W3132342070 cites W1992415985 @default.
- W3132342070 cites W2002335991 @default.
- W3132342070 cites W2002647381 @default.
- W3132342070 cites W2011149490 @default.
- W3132342070 cites W2015110896 @default.
- W3132342070 cites W2027101647 @default.
- W3132342070 cites W2029863912 @default.
- W3132342070 cites W2039150507 @default.
- W3132342070 cites W2042247713 @default.
- W3132342070 cites W2050820433 @default.
- W3132342070 cites W2057393236 @default.
- W3132342070 cites W2057848798 @default.
- W3132342070 cites W2061048870 @default.
- W3132342070 cites W2074295499 @default.
- W3132342070 cites W2077651848 @default.
- W3132342070 cites W2078644903 @default.
- W3132342070 cites W2079360360 @default.
- W3132342070 cites W2086127461 @default.
- W3132342070 cites W2110187357 @default.
- W3132342070 cites W2131537960 @default.
- W3132342070 cites W2141853430 @default.
- W3132342070 cites W2141934752 @default.
- W3132342070 cites W2148302906 @default.
- W3132342070 cites W2148897203 @default.
- W3132342070 cites W2157772548 @default.
- W3132342070 cites W2216523920 @default.
- W3132342070 cites W2276323394 @default.
- W3132342070 cites W2315764759 @default.
- W3132342070 cites W2511114288 @default.
- W3132342070 cites W2564800775 @default.
- W3132342070 cites W2607052955 @default.
- W3132342070 cites W2611125018 @default.
- W3132342070 cites W2789166828 @default.
- W3132342070 cites W2789231469 @default.
- W3132342070 cites W2802768264 @default.
- W3132342070 cites W2802813942 @default.
- W3132342070 cites W2885108299 @default.
- W3132342070 cites W2894865497 @default.
- W3132342070 cites W2963434471 @default.
- W3132342070 cites W2963532142 @default.
- W3132342070 cites W3003687283 @default.
- W3132342070 cites W4241125977 @default.
- W3132342070 doi "https://doi.org/10.1016/j.cpc.2021.107906" @default.
- W3132342070 hasPublicationYear "2021" @default.
- W3132342070 type Work @default.
- W3132342070 sameAs 3132342070 @default.
- W3132342070 citedByCount "44" @default.
- W3132342070 countsByYear W31323420702021 @default.
- W3132342070 countsByYear W31323420702022 @default.
- W3132342070 countsByYear W31323420702023 @default.
- W3132342070 crossrefType "journal-article" @default.
- W3132342070 hasAuthorship W3132342070A5040636094 @default.
- W3132342070 hasAuthorship W3132342070A5069613322 @default.
- W3132342070 hasAuthorship W3132342070A5071316495 @default.
- W3132342070 hasAuthorship W3132342070A5082664241 @default.
- W3132342070 hasBestOaLocation W31323420702 @default.
- W3132342070 hasConcept C121332964 @default.
- W3132342070 hasConcept C165231844 @default.
- W3132342070 hasConcept C173608175 @default.
- W3132342070 hasConcept C199360897 @default.
- W3132342070 hasConcept C205991772 @default.
- W3132342070 hasConcept C2778119891 @default.
- W3132342070 hasConcept C2778770139 @default.
- W3132342070 hasConcept C41008148 @default.
- W3132342070 hasConcept C459310 @default.
- W3132342070 hasConcept C5192115 @default.
- W3132342070 hasConcept C57879066 @default.
- W3132342070 hasConcept C76752949 @default.
- W3132342070 hasConcept C84655787 @default.
- W3132342070 hasConceptScore W3132342070C121332964 @default.
- W3132342070 hasConceptScore W3132342070C165231844 @default.
- W3132342070 hasConceptScore W3132342070C173608175 @default.
- W3132342070 hasConceptScore W3132342070C199360897 @default.
- W3132342070 hasConceptScore W3132342070C205991772 @default.
- W3132342070 hasConceptScore W3132342070C2778119891 @default.
- W3132342070 hasConceptScore W3132342070C2778770139 @default.
- W3132342070 hasConceptScore W3132342070C41008148 @default.
- W3132342070 hasConceptScore W3132342070C459310 @default.
- W3132342070 hasConceptScore W3132342070C5192115 @default.
- W3132342070 hasConceptScore W3132342070C57879066 @default.
- W3132342070 hasConceptScore W3132342070C76752949 @default.
- W3132342070 hasConceptScore W3132342070C84655787 @default.
- W3132342070 hasFunder F4320321873 @default.
- W3132342070 hasLocation W31323420701 @default.
- W3132342070 hasLocation W31323420702 @default.