Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132368637> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3132368637 endingPage "310" @default.
- W3132368637 startingPage "304" @default.
- W3132368637 abstract "In this paper, we propose vehicle detection and classification in a real road environment using a modified and improved AlexNet. Among the various challenges faced, the problem of poor robustness in extracting vehicle candidate regions through a single feature is solved using the YOLO deep learning series algorithm used to propose potential regions and to further improve the speed of detection. For this, the lightweight network Yolov2-tiny is chosen as the location network. In the training process, anchor box clustering is performed based on the ground truth of the training set, which improves its performance on the specific dataset. The low classification accuracy problem after template-based feature extraction is solved using the optimal feature description extracted through convolution neural network learning. Moreover, based on AlexNet, through adjusting parameters, an improved algorithm was proposed whose model size is smaller and classification speed is faster than the original AlexNet. Spatial Pyramid Pooling (SPP) is added to the vehicle classification network which solves the problem of low accuracy due to image distortion caused by image resizing. By combining CNN with SVM and normalizing features in SVM, the generalization ability of the model was improved. Experiments show that our method has a better performance in vehicle detection and type classification." @default.
- W3132368637 created "2021-03-01" @default.
- W3132368637 creator A5007320839 @default.
- W3132368637 creator A5032139864 @default.
- W3132368637 creator A5072689569 @default.
- W3132368637 date "2021-08-01" @default.
- W3132368637 modified "2023-10-05" @default.
- W3132368637 title "Vehicle Detection and Type Classification Based on CNN-SVM" @default.
- W3132368637 cites W1915148610 @default.
- W3132368637 cites W2179352600 @default.
- W3132368637 cites W2618530766 @default.
- W3132368637 cites W2913203496 @default.
- W3132368637 cites W2914827493 @default.
- W3132368637 cites W2963037989 @default.
- W3132368637 cites W2963963265 @default.
- W3132368637 doi "https://doi.org/10.18178/ijmlc.2021.11.4.1052" @default.
- W3132368637 hasPublicationYear "2021" @default.
- W3132368637 type Work @default.
- W3132368637 sameAs 3132368637 @default.
- W3132368637 citedByCount "10" @default.
- W3132368637 countsByYear W31323686372021 @default.
- W3132368637 countsByYear W31323686372022 @default.
- W3132368637 countsByYear W31323686372023 @default.
- W3132368637 crossrefType "journal-article" @default.
- W3132368637 hasAuthorship W3132368637A5007320839 @default.
- W3132368637 hasAuthorship W3132368637A5032139864 @default.
- W3132368637 hasAuthorship W3132368637A5072689569 @default.
- W3132368637 hasBestOaLocation W31323686371 @default.
- W3132368637 hasConcept C104317684 @default.
- W3132368637 hasConcept C115961682 @default.
- W3132368637 hasConcept C12267149 @default.
- W3132368637 hasConcept C142575187 @default.
- W3132368637 hasConcept C146849305 @default.
- W3132368637 hasConcept C153180895 @default.
- W3132368637 hasConcept C154945302 @default.
- W3132368637 hasConcept C185592680 @default.
- W3132368637 hasConcept C2524010 @default.
- W3132368637 hasConcept C33923547 @default.
- W3132368637 hasConcept C41008148 @default.
- W3132368637 hasConcept C52622490 @default.
- W3132368637 hasConcept C55493867 @default.
- W3132368637 hasConcept C63479239 @default.
- W3132368637 hasConcept C70437156 @default.
- W3132368637 hasConcept C73555534 @default.
- W3132368637 hasConcept C75294576 @default.
- W3132368637 hasConcept C81363708 @default.
- W3132368637 hasConceptScore W3132368637C104317684 @default.
- W3132368637 hasConceptScore W3132368637C115961682 @default.
- W3132368637 hasConceptScore W3132368637C12267149 @default.
- W3132368637 hasConceptScore W3132368637C142575187 @default.
- W3132368637 hasConceptScore W3132368637C146849305 @default.
- W3132368637 hasConceptScore W3132368637C153180895 @default.
- W3132368637 hasConceptScore W3132368637C154945302 @default.
- W3132368637 hasConceptScore W3132368637C185592680 @default.
- W3132368637 hasConceptScore W3132368637C2524010 @default.
- W3132368637 hasConceptScore W3132368637C33923547 @default.
- W3132368637 hasConceptScore W3132368637C41008148 @default.
- W3132368637 hasConceptScore W3132368637C52622490 @default.
- W3132368637 hasConceptScore W3132368637C55493867 @default.
- W3132368637 hasConceptScore W3132368637C63479239 @default.
- W3132368637 hasConceptScore W3132368637C70437156 @default.
- W3132368637 hasConceptScore W3132368637C73555534 @default.
- W3132368637 hasConceptScore W3132368637C75294576 @default.
- W3132368637 hasConceptScore W3132368637C81363708 @default.
- W3132368637 hasIssue "4" @default.
- W3132368637 hasLocation W31323686371 @default.
- W3132368637 hasOpenAccess W3132368637 @default.
- W3132368637 hasPrimaryLocation W31323686371 @default.
- W3132368637 hasRelatedWork W2056016498 @default.
- W3132368637 hasRelatedWork W2291847203 @default.
- W3132368637 hasRelatedWork W2336974148 @default.
- W3132368637 hasRelatedWork W2406522397 @default.
- W3132368637 hasRelatedWork W2424871898 @default.
- W3132368637 hasRelatedWork W2756241593 @default.
- W3132368637 hasRelatedWork W2767651786 @default.
- W3132368637 hasRelatedWork W2912288872 @default.
- W3132368637 hasRelatedWork W3002446410 @default.
- W3132368637 hasRelatedWork W2345184372 @default.
- W3132368637 hasVolume "11" @default.
- W3132368637 isParatext "false" @default.
- W3132368637 isRetracted "false" @default.
- W3132368637 magId "3132368637" @default.
- W3132368637 workType "article" @default.