Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132371243> ?p ?o ?g. }
- W3132371243 endingPage "753" @default.
- W3132371243 startingPage "744" @default.
- W3132371243 abstract "In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots." @default.
- W3132371243 created "2021-03-01" @default.
- W3132371243 creator A5018267168 @default.
- W3132371243 creator A5026194474 @default.
- W3132371243 creator A5032839418 @default.
- W3132371243 creator A5058987862 @default.
- W3132371243 creator A5060426096 @default.
- W3132371243 creator A5067265290 @default.
- W3132371243 creator A5068365592 @default.
- W3132371243 date "2021-02-14" @default.
- W3132371243 modified "2023-10-03" @default.
- W3132371243 title "A visual terrain classification method for mobile robots’ navigation based on convolutional neural network and support vector machine" @default.
- W3132371243 cites W1601486864 @default.
- W3132371243 cites W1934184906 @default.
- W3132371243 cites W1964877299 @default.
- W3132371243 cites W1974868116 @default.
- W3132371243 cites W2015861736 @default.
- W3132371243 cites W2027809320 @default.
- W3132371243 cites W2055346300 @default.
- W3132371243 cites W2078550116 @default.
- W3132371243 cites W2086564205 @default.
- W3132371243 cites W2123831806 @default.
- W3132371243 cites W2125409550 @default.
- W3132371243 cites W2136213179 @default.
- W3132371243 cites W2147800946 @default.
- W3132371243 cites W2148738503 @default.
- W3132371243 cites W2171330795 @default.
- W3132371243 cites W2509415725 @default.
- W3132371243 cites W2509494001 @default.
- W3132371243 cites W2723476043 @default.
- W3132371243 cites W2739138241 @default.
- W3132371243 cites W2778494645 @default.
- W3132371243 cites W2791664861 @default.
- W3132371243 cites W2803780405 @default.
- W3132371243 cites W2853129952 @default.
- W3132371243 cites W3039276560 @default.
- W3132371243 cites W3101757550 @default.
- W3132371243 doi "https://doi.org/10.1177/0142331220987917" @default.
- W3132371243 hasPublicationYear "2021" @default.
- W3132371243 type Work @default.
- W3132371243 sameAs 3132371243 @default.
- W3132371243 citedByCount "15" @default.
- W3132371243 countsByYear W31323712432021 @default.
- W3132371243 countsByYear W31323712432022 @default.
- W3132371243 countsByYear W31323712432023 @default.
- W3132371243 crossrefType "journal-article" @default.
- W3132371243 hasAuthorship W3132371243A5018267168 @default.
- W3132371243 hasAuthorship W3132371243A5026194474 @default.
- W3132371243 hasAuthorship W3132371243A5032839418 @default.
- W3132371243 hasAuthorship W3132371243A5058987862 @default.
- W3132371243 hasAuthorship W3132371243A5060426096 @default.
- W3132371243 hasAuthorship W3132371243A5067265290 @default.
- W3132371243 hasAuthorship W3132371243A5068365592 @default.
- W3132371243 hasConcept C108583219 @default.
- W3132371243 hasConcept C119857082 @default.
- W3132371243 hasConcept C12267149 @default.
- W3132371243 hasConcept C153180895 @default.
- W3132371243 hasConcept C154945302 @default.
- W3132371243 hasConcept C161840515 @default.
- W3132371243 hasConcept C18903297 @default.
- W3132371243 hasConcept C19966478 @default.
- W3132371243 hasConcept C2777212361 @default.
- W3132371243 hasConcept C41008148 @default.
- W3132371243 hasConcept C50644808 @default.
- W3132371243 hasConcept C81363708 @default.
- W3132371243 hasConcept C86803240 @default.
- W3132371243 hasConcept C90509273 @default.
- W3132371243 hasConceptScore W3132371243C108583219 @default.
- W3132371243 hasConceptScore W3132371243C119857082 @default.
- W3132371243 hasConceptScore W3132371243C12267149 @default.
- W3132371243 hasConceptScore W3132371243C153180895 @default.
- W3132371243 hasConceptScore W3132371243C154945302 @default.
- W3132371243 hasConceptScore W3132371243C161840515 @default.
- W3132371243 hasConceptScore W3132371243C18903297 @default.
- W3132371243 hasConceptScore W3132371243C19966478 @default.
- W3132371243 hasConceptScore W3132371243C2777212361 @default.
- W3132371243 hasConceptScore W3132371243C41008148 @default.
- W3132371243 hasConceptScore W3132371243C50644808 @default.
- W3132371243 hasConceptScore W3132371243C81363708 @default.
- W3132371243 hasConceptScore W3132371243C86803240 @default.
- W3132371243 hasConceptScore W3132371243C90509273 @default.
- W3132371243 hasFunder F4320327494 @default.
- W3132371243 hasIssue "4" @default.
- W3132371243 hasLocation W31323712431 @default.
- W3132371243 hasOpenAccess W3132371243 @default.
- W3132371243 hasPrimaryLocation W31323712431 @default.
- W3132371243 hasRelatedWork W2131012217 @default.
- W3132371243 hasRelatedWork W2131357063 @default.
- W3132371243 hasRelatedWork W2731899572 @default.
- W3132371243 hasRelatedWork W2999805992 @default.
- W3132371243 hasRelatedWork W3116150086 @default.
- W3132371243 hasRelatedWork W3133861977 @default.
- W3132371243 hasRelatedWork W4200173597 @default.
- W3132371243 hasRelatedWork W4312417841 @default.
- W3132371243 hasRelatedWork W4321369474 @default.
- W3132371243 hasRelatedWork W4380075502 @default.
- W3132371243 hasVolume "44" @default.
- W3132371243 isParatext "false" @default.