Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132400002> ?p ?o ?g. }
- W3132400002 endingPage "A87" @default.
- W3132400002 startingPage "A87" @default.
- W3132400002 abstract "Classification of sources is one of the most important tasks in astronomy. Sources detected in one wavelength band, for example using gamma rays, may have several possible associations in other wavebands, or there may be no plausible association candidates. In this work we aim to determine the probabilistic classification of unassociated sources in the third Fermi Large Area Telescope (LAT) point source catalog (3FGL) and the fourth Fermi LAT data release 2 point source catalog (4FGL-DR2) using two classes - pulsars and active galactic nuclei (AGNs) - or three classes - pulsars, AGNs, and OTHER sources. We use several machine learning (ML) methods to determine a probabilistic classification of Fermi-LAT sources. We evaluate the dependence of results on the meta-parameters of the ML methods, such as the maximal depth of the trees in tree-based classification methods and the number of neurons in neural networks. We determine a probabilistic classification of both associated and unassociated sources in the 3FGL and 4FGL-DR2 catalogs. We cross-check the accuracy by comparing the predicted classes of unassociated sources in 3FGL with their associations in 4FGL-DR2 for cases where such associations exist. We find that in the two-class case it is important to correct for the presence of OTHER sources among the unassociated ones in order to realistically estimate the number of pulsars and AGNs. We find that the three-class classification, despite different types of sources in the OTHER class, has a similar performance as the two-class classification in terms of reliability diagrams and, at the same time, it does not require adjustment due to presence of the OTHER sources among the unassociated sources. We show an example of the use of the probabilistic catalogs for population studies, which include associated and unassociated sources." @default.
- W3132400002 created "2021-03-01" @default.
- W3132400002 creator A5006209364 @default.
- W3132400002 creator A5072580734 @default.
- W3132400002 date "2022-04-01" @default.
- W3132400002 modified "2023-09-25" @default.
- W3132400002 title "Machine learning methods for constructing probabilistic <i>Fermi</i>-LAT catalogs" @default.
- W3132400002 cites W1515149315 @default.
- W3132400002 cites W1678356000 @default.
- W3132400002 cites W1869766355 @default.
- W3132400002 cites W1880491442 @default.
- W3132400002 cites W1926942421 @default.
- W3132400002 cites W2003151887 @default.
- W3132400002 cites W2011301426 @default.
- W3132400002 cites W2050273642 @default.
- W3132400002 cites W2051434435 @default.
- W3132400002 cites W2054127642 @default.
- W3132400002 cites W2057037672 @default.
- W3132400002 cites W2113242816 @default.
- W3132400002 cites W2128084896 @default.
- W3132400002 cites W2135625048 @default.
- W3132400002 cites W2143140987 @default.
- W3132400002 cites W2148143831 @default.
- W3132400002 cites W2151094992 @default.
- W3132400002 cites W2156497844 @default.
- W3132400002 cites W2162853691 @default.
- W3132400002 cites W2205486956 @default.
- W3132400002 cites W2262571428 @default.
- W3132400002 cites W2340303076 @default.
- W3132400002 cites W2345446975 @default.
- W3132400002 cites W2348034836 @default.
- W3132400002 cites W2480428645 @default.
- W3132400002 cites W2514801510 @default.
- W3132400002 cites W2533579457 @default.
- W3132400002 cites W2586750232 @default.
- W3132400002 cites W2618123267 @default.
- W3132400002 cites W2626230259 @default.
- W3132400002 cites W2735285350 @default.
- W3132400002 cites W2767875067 @default.
- W3132400002 cites W2911964244 @default.
- W3132400002 cites W2963156201 @default.
- W3132400002 cites W2980547906 @default.
- W3132400002 cites W3000465278 @default.
- W3132400002 cites W3000716015 @default.
- W3132400002 cites W3007561154 @default.
- W3132400002 cites W3019425086 @default.
- W3132400002 cites W3026439308 @default.
- W3132400002 cites W3027520426 @default.
- W3132400002 cites W3029380165 @default.
- W3132400002 cites W3045861225 @default.
- W3132400002 cites W3098725024 @default.
- W3132400002 cites W3099714470 @default.
- W3132400002 cites W3100449662 @default.
- W3132400002 cites W3101214716 @default.
- W3132400002 cites W3101445306 @default.
- W3132400002 cites W3101961922 @default.
- W3132400002 cites W3102462343 @default.
- W3132400002 cites W3104599619 @default.
- W3132400002 cites W3105435777 @default.
- W3132400002 cites W3112888064 @default.
- W3132400002 cites W3138469835 @default.
- W3132400002 cites W4211080138 @default.
- W3132400002 cites W4293107573 @default.
- W3132400002 cites W4293183835 @default.
- W3132400002 cites W805782642 @default.
- W3132400002 doi "https://doi.org/10.1051/0004-6361/202140766" @default.
- W3132400002 hasPublicationYear "2022" @default.
- W3132400002 type Work @default.
- W3132400002 sameAs 3132400002 @default.
- W3132400002 citedByCount "3" @default.
- W3132400002 countsByYear W31324000022022 @default.
- W3132400002 countsByYear W31324000022023 @default.
- W3132400002 crossrefType "journal-article" @default.
- W3132400002 hasAuthorship W3132400002A5006209364 @default.
- W3132400002 hasAuthorship W3132400002A5072580734 @default.
- W3132400002 hasBestOaLocation W31324000021 @default.
- W3132400002 hasConcept C110363677 @default.
- W3132400002 hasConcept C119857082 @default.
- W3132400002 hasConcept C121332964 @default.
- W3132400002 hasConcept C12267149 @default.
- W3132400002 hasConcept C1276947 @default.
- W3132400002 hasConcept C153180895 @default.
- W3132400002 hasConcept C154945302 @default.
- W3132400002 hasConcept C186769553 @default.
- W3132400002 hasConcept C189119545 @default.
- W3132400002 hasConcept C2524010 @default.
- W3132400002 hasConcept C2777212361 @default.
- W3132400002 hasConcept C2780848835 @default.
- W3132400002 hasConcept C28719098 @default.
- W3132400002 hasConcept C33923547 @default.
- W3132400002 hasConcept C41008148 @default.
- W3132400002 hasConcept C44870925 @default.
- W3132400002 hasConcept C49937458 @default.
- W3132400002 hasConcept C52001869 @default.
- W3132400002 hasConceptScore W3132400002C110363677 @default.
- W3132400002 hasConceptScore W3132400002C119857082 @default.
- W3132400002 hasConceptScore W3132400002C121332964 @default.
- W3132400002 hasConceptScore W3132400002C12267149 @default.