Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132430937> ?p ?o ?g. }
Showing items 1 to 40 of
40
with 100 items per page.
- W3132430937 endingPage "284" @default.
- W3132430937 startingPage "267" @default.
- W3132430937 abstract "In this chapter, we put an effort to focus on the processing and storage issues that can be carried out from the updates of unstructured data in the unconstraint environment. In the technological aspects, we discuss the existing intelligent deep network architectures along with traditional machine learning approaches. The outcomes of the analytical discussion presented in this chapter enable to picturize a generalized intelligent neural network for processing highly complex visual data with graphs and manifold structures. The essential issues with updating the hidden layers and some fast optimization techniques are also introduced. Finally, this can be concluded that the presented work reflects the sounding challenges to process and extract qualitative information from the densely unstructured tremendous amount of training data. In case of video processing, we need to frame out various deep learning aspects that can lead the research work to highly resourceful scope for deep data analytics and many problems that require high-performance computing in visual media." @default.
- W3132430937 created "2021-03-01" @default.
- W3132430937 creator A5062847810 @default.
- W3132430937 date "2021-04-02" @default.
- W3132430937 modified "2023-09-25" @default.
- W3132430937 title "Recent Issues with Machine Vision Applications for Deep Network Architectures" @default.
- W3132430937 cites W1746680969 @default.
- W3132430937 doi "https://doi.org/10.1201/9781003082033-14" @default.
- W3132430937 hasPublicationYear "2021" @default.
- W3132430937 type Work @default.
- W3132430937 sameAs 3132430937 @default.
- W3132430937 citedByCount "2" @default.
- W3132430937 countsByYear W31324309372022 @default.
- W3132430937 crossrefType "book-chapter" @default.
- W3132430937 hasAuthorship W3132430937A5062847810 @default.
- W3132430937 hasConcept C154945302 @default.
- W3132430937 hasConcept C41008148 @default.
- W3132430937 hasConcept C5339829 @default.
- W3132430937 hasConceptScore W3132430937C154945302 @default.
- W3132430937 hasConceptScore W3132430937C41008148 @default.
- W3132430937 hasConceptScore W3132430937C5339829 @default.
- W3132430937 hasLocation W31324309371 @default.
- W3132430937 hasOpenAccess W3132430937 @default.
- W3132430937 hasPrimaryLocation W31324309371 @default.
- W3132430937 hasRelatedWork W1671651577 @default.
- W3132430937 hasRelatedWork W1971038132 @default.
- W3132430937 hasRelatedWork W2047881670 @default.
- W3132430937 hasRelatedWork W2928162577 @default.
- W3132430937 hasRelatedWork W2948613463 @default.
- W3132430937 hasRelatedWork W3107474891 @default.
- W3132430937 hasRelatedWork W3129181224 @default.
- W3132430937 hasRelatedWork W3187585956 @default.
- W3132430937 hasRelatedWork W3216143833 @default.
- W3132430937 hasRelatedWork W4320009349 @default.
- W3132430937 isParatext "false" @default.
- W3132430937 isRetracted "false" @default.
- W3132430937 magId "3132430937" @default.
- W3132430937 workType "book-chapter" @default.