Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132497544> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3132497544 endingPage "e06331" @default.
- W3132497544 startingPage "e06331" @default.
- W3132497544 abstract "Papanicolaou and Giemsa stains used in cytology have different characteristics and complementary roles. In this study, we focused on cycle-consistent generative adversarial network (CycleGAN), which is an image translation technique using deep learning, and we conducted mutual stain conversion between Giemsa and Papanicolaou in cytological images using CycleGAN.A total of 191 Giemsa-stained images and 209 Papanicolaou-stained images were collected from 63 patients with lung cancer. From those images, 67 images from nine cases were used for testing and the remaining images were used for training. For data augmentation, the number of training images was increased by rotation and inversion, and the images were pipelined to CycleGAN to train the mutual conversion process involving Giemsa- and Papanicolaou-stained images. Three pathologists and three cytotechnologists performed visual evaluations of the authenticity of cell nuclei, cytoplasm, and cell layouts of the test images translated using CycleGAN.As a result of converting Giemsa-stained images into Papanicolaou-stained images, the background red blood cell patterns present in Giemsa-stained images disappeared, and cell patterns that reproduced the shape and staining of the cell nuclei and cytoplasm peculiar to Papanicolaou staining were obtained. Regarding the reverse-translated results, nuclei became larger, and red blood cells that were not evident in Papanicolaou-stained images appeared. After visual evaluation, although actual images exhibited better results than converted images, the results were promising for various applications.The stain translation technique investigated in this paper can complement specimens under conditions where only single stained specimens are available; it also has potential applications in the massive training of artificial intelligence systems for cell classification, and can also be used for training cytotechnologist and pathologists." @default.
- W3132497544 created "2021-03-01" @default.
- W3132497544 creator A5006717260 @default.
- W3132497544 creator A5009725511 @default.
- W3132497544 creator A5014764863 @default.
- W3132497544 creator A5027406783 @default.
- W3132497544 creator A5033914337 @default.
- W3132497544 creator A5046852032 @default.
- W3132497544 creator A5049262522 @default.
- W3132497544 creator A5058885400 @default.
- W3132497544 creator A5076397859 @default.
- W3132497544 creator A5091863018 @default.
- W3132497544 date "2021-02-01" @default.
- W3132497544 modified "2023-10-18" @default.
- W3132497544 title "Mutual stain conversion between Giemsa and Papanicolaou in cytological images using cycle generative adversarial network" @default.
- W3132497544 cites W2022542106 @default.
- W3132497544 cites W2153326832 @default.
- W3132497544 cites W2618530766 @default.
- W3132497544 cites W2745006834 @default.
- W3132497544 cites W2883683269 @default.
- W3132497544 cites W2919115771 @default.
- W3132497544 cites W2998697825 @default.
- W3132497544 cites W3009705059 @default.
- W3132497544 cites W3028231159 @default.
- W3132497544 cites W3107979957 @default.
- W3132497544 doi "https://doi.org/10.1016/j.heliyon.2021.e06331" @default.
- W3132497544 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7921513" @default.
- W3132497544 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33718644" @default.
- W3132497544 hasPublicationYear "2021" @default.
- W3132497544 type Work @default.
- W3132497544 sameAs 3132497544 @default.
- W3132497544 citedByCount "4" @default.
- W3132497544 countsByYear W31324975442022 @default.
- W3132497544 countsByYear W31324975442023 @default.
- W3132497544 crossrefType "journal-article" @default.
- W3132497544 hasAuthorship W3132497544A5006717260 @default.
- W3132497544 hasAuthorship W3132497544A5009725511 @default.
- W3132497544 hasAuthorship W3132497544A5014764863 @default.
- W3132497544 hasAuthorship W3132497544A5027406783 @default.
- W3132497544 hasAuthorship W3132497544A5033914337 @default.
- W3132497544 hasAuthorship W3132497544A5046852032 @default.
- W3132497544 hasAuthorship W3132497544A5049262522 @default.
- W3132497544 hasAuthorship W3132497544A5058885400 @default.
- W3132497544 hasAuthorship W3132497544A5076397859 @default.
- W3132497544 hasAuthorship W3132497544A5091863018 @default.
- W3132497544 hasBestOaLocation W31324975441 @default.
- W3132497544 hasConcept C121608353 @default.
- W3132497544 hasConcept C142724271 @default.
- W3132497544 hasConcept C154488023 @default.
- W3132497544 hasConcept C154945302 @default.
- W3132497544 hasConcept C2778220009 @default.
- W3132497544 hasConcept C2781294515 @default.
- W3132497544 hasConcept C2908603675 @default.
- W3132497544 hasConcept C41008148 @default.
- W3132497544 hasConcept C54355233 @default.
- W3132497544 hasConcept C65051434 @default.
- W3132497544 hasConcept C71924100 @default.
- W3132497544 hasConcept C74864618 @default.
- W3132497544 hasConcept C86803240 @default.
- W3132497544 hasConceptScore W3132497544C121608353 @default.
- W3132497544 hasConceptScore W3132497544C142724271 @default.
- W3132497544 hasConceptScore W3132497544C154488023 @default.
- W3132497544 hasConceptScore W3132497544C154945302 @default.
- W3132497544 hasConceptScore W3132497544C2778220009 @default.
- W3132497544 hasConceptScore W3132497544C2781294515 @default.
- W3132497544 hasConceptScore W3132497544C2908603675 @default.
- W3132497544 hasConceptScore W3132497544C41008148 @default.
- W3132497544 hasConceptScore W3132497544C54355233 @default.
- W3132497544 hasConceptScore W3132497544C65051434 @default.
- W3132497544 hasConceptScore W3132497544C71924100 @default.
- W3132497544 hasConceptScore W3132497544C74864618 @default.
- W3132497544 hasConceptScore W3132497544C86803240 @default.
- W3132497544 hasFunder F4320320912 @default.
- W3132497544 hasIssue "2" @default.
- W3132497544 hasLocation W31324975441 @default.
- W3132497544 hasLocation W31324975442 @default.
- W3132497544 hasLocation W31324975443 @default.
- W3132497544 hasOpenAccess W3132497544 @default.
- W3132497544 hasPrimaryLocation W31324975441 @default.
- W3132497544 hasRelatedWork W1987590273 @default.
- W3132497544 hasRelatedWork W2035238306 @default.
- W3132497544 hasRelatedWork W2365439897 @default.
- W3132497544 hasRelatedWork W2588131491 @default.
- W3132497544 hasRelatedWork W2625439816 @default.
- W3132497544 hasRelatedWork W2791865044 @default.
- W3132497544 hasRelatedWork W27952613 @default.
- W3132497544 hasRelatedWork W2887942032 @default.
- W3132497544 hasRelatedWork W2891719766 @default.
- W3132497544 hasRelatedWork W3106552889 @default.
- W3132497544 hasVolume "7" @default.
- W3132497544 isParatext "false" @default.
- W3132497544 isRetracted "false" @default.
- W3132497544 magId "3132497544" @default.
- W3132497544 workType "article" @default.