Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132502456> ?p ?o ?g. }
- W3132502456 abstract "In this paper, we consider solving a composite optimization problem with coupling constraints in a multi-agent network based on proximal gradient method. In this problem, all the agents jointly minimize the sum of individual cost functions composed of smooth and possibly non-smooth parts. To this end, we derive the dual problem by the concept of Fenchel conjugate, which gives rise to the dual proximal gradient algorithm by allowing for the asymmetric individual interpretations of the global constraints. Then, an asynchronous dual proximal gradient algorithm is proposed for the asynchronous networks with heterogenous step-sizes and communication delays. For both the two algorithms, if the non-smooth parts of the objective functions are simple-structured, we only need to update dual variables by some simple operations, accounting for the reduction of the overall computational complexity. Analytical convergence rate of the proposed algorithms is derived and their efficacy is verified by solving a social welfare optimization problem of electricity market in the numerical simulation." @default.
- W3132502456 created "2021-03-01" @default.
- W3132502456 creator A5015505343 @default.
- W3132502456 creator A5050664552 @default.
- W3132502456 date "2021-02-25" @default.
- W3132502456 modified "2023-09-26" @default.
- W3132502456 title "Composite Optimization with Coupling Constraints via Dual Proximal Gradient Method with Applications to Asynchronous Networks" @default.
- W3132502456 cites W1494605365 @default.
- W3132502456 cites W1540376964 @default.
- W3132502456 cites W1578099820 @default.
- W3132502456 cites W1603765807 @default.
- W3132502456 cites W1627780903 @default.
- W3132502456 cites W1963021298 @default.
- W3132502456 cites W2003085133 @default.
- W3132502456 cites W2020313791 @default.
- W3132502456 cites W2022948311 @default.
- W3132502456 cites W2041779820 @default.
- W3132502456 cites W2066691803 @default.
- W3132502456 cites W2076428552 @default.
- W3132502456 cites W2088624648 @default.
- W3132502456 cites W2092620240 @default.
- W3132502456 cites W2122464312 @default.
- W3132502456 cites W2127883485 @default.
- W3132502456 cites W2155356457 @default.
- W3132502456 cites W2155723734 @default.
- W3132502456 cites W2169713291 @default.
- W3132502456 cites W2559642817 @default.
- W3132502456 cites W2571533307 @default.
- W3132502456 cites W2590184275 @default.
- W3132502456 cites W2590701476 @default.
- W3132502456 cites W2606474801 @default.
- W3132502456 cites W2609535051 @default.
- W3132502456 cites W2763081248 @default.
- W3132502456 cites W2765625769 @default.
- W3132502456 cites W2772743719 @default.
- W3132502456 cites W2887851880 @default.
- W3132502456 cites W2962751385 @default.
- W3132502456 cites W2962760808 @default.
- W3132502456 cites W2962821801 @default.
- W3132502456 cites W2962853966 @default.
- W3132502456 cites W2963061698 @default.
- W3132502456 cites W2963128910 @default.
- W3132502456 cites W2963590077 @default.
- W3132502456 cites W2964120262 @default.
- W3132502456 cites W2964134982 @default.
- W3132502456 cites W3009520628 @default.
- W3132502456 cites W3019159559 @default.
- W3132502456 cites W3020737992 @default.
- W3132502456 cites W3043632791 @default.
- W3132502456 cites W3088102276 @default.
- W3132502456 cites W3094136799 @default.
- W3132502456 cites W3139860299 @default.
- W3132502456 doi "https://doi.org/10.48550/arxiv.2102.12797" @default.
- W3132502456 hasPublicationYear "2021" @default.
- W3132502456 type Work @default.
- W3132502456 sameAs 3132502456 @default.
- W3132502456 citedByCount "3" @default.
- W3132502456 countsByYear W31325024562021 @default.
- W3132502456 countsByYear W31325024562022 @default.
- W3132502456 crossrefType "posted-content" @default.
- W3132502456 hasAuthorship W3132502456A5015505343 @default.
- W3132502456 hasAuthorship W3132502456A5050664552 @default.
- W3132502456 hasBestOaLocation W31325024561 @default.
- W3132502456 hasConcept C111472728 @default.
- W3132502456 hasConcept C11413529 @default.
- W3132502456 hasConcept C115680565 @default.
- W3132502456 hasConcept C124952713 @default.
- W3132502456 hasConcept C126255220 @default.
- W3132502456 hasConcept C127413603 @default.
- W3132502456 hasConcept C131584629 @default.
- W3132502456 hasConcept C137836250 @default.
- W3132502456 hasConcept C138885662 @default.
- W3132502456 hasConcept C142362112 @default.
- W3132502456 hasConcept C151319957 @default.
- W3132502456 hasConcept C153258448 @default.
- W3132502456 hasConcept C154945302 @default.
- W3132502456 hasConcept C162324750 @default.
- W3132502456 hasConcept C26362088 @default.
- W3132502456 hasConcept C26517878 @default.
- W3132502456 hasConcept C2777303404 @default.
- W3132502456 hasConcept C2780586882 @default.
- W3132502456 hasConcept C2780980858 @default.
- W3132502456 hasConcept C31258907 @default.
- W3132502456 hasConcept C33923547 @default.
- W3132502456 hasConcept C38652104 @default.
- W3132502456 hasConcept C41008148 @default.
- W3132502456 hasConcept C50522688 @default.
- W3132502456 hasConcept C50644808 @default.
- W3132502456 hasConcept C57869625 @default.
- W3132502456 hasConcept C62611344 @default.
- W3132502456 hasConcept C66938386 @default.
- W3132502456 hasConcept C78519656 @default.
- W3132502456 hasConcept C81184566 @default.
- W3132502456 hasConceptScore W3132502456C111472728 @default.
- W3132502456 hasConceptScore W3132502456C11413529 @default.
- W3132502456 hasConceptScore W3132502456C115680565 @default.
- W3132502456 hasConceptScore W3132502456C124952713 @default.
- W3132502456 hasConceptScore W3132502456C126255220 @default.
- W3132502456 hasConceptScore W3132502456C127413603 @default.
- W3132502456 hasConceptScore W3132502456C131584629 @default.