Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132609532> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3132609532 abstract "Deep learning, which is the next phase of machine learning in recent decades, has significantly changed the way in which computer systems interpret human-centric content such as images, video, speech and audio. Different models have been introduced based on learning techniques such as supervised, unsupervised, reinforcement, and it is expected to accelerate and create even more innovative models in the coming years. With the rise of the Internet of Things (IoT), many real-time applications collect data about people and their environment using IoT sensors and feed them into deep learning models to enhance the intelligence and the capabilities of an application, for offering better recommendations and service. Experimental results of most of these applications looks promising when compared with traditional machine learning approaches. So, the main objective of this chapter is to make a self-contained review of Deep Learning (DL) models, starting with the Convolutioanl Neural Network (CNN), Recurrent Neural Network (RNN), Long-Term Short Memory (LSTM), AutoEncoder (AE), Generative Adversarial Network (GAN) and Deep Reinforcement Learning (DRL). Additionally, for providing better understanding of the models and their efficiency, we have added recently developed DL tools or framework and their applications." @default.
- W3132609532 created "2021-03-01" @default.
- W3132609532 creator A5043310804 @default.
- W3132609532 creator A5068543994 @default.
- W3132609532 date "2021-01-01" @default.
- W3132609532 modified "2023-09-29" @default.
- W3132609532 title "Deep Learning Algorithm and Its Applications to IoT and Computer Vision" @default.
- W3132609532 cites W1898227994 @default.
- W3132609532 cites W2062017159 @default.
- W3132609532 cites W2076063813 @default.
- W3132609532 cites W2139038191 @default.
- W3132609532 cites W2147768505 @default.
- W3132609532 cites W2190746225 @default.
- W3132609532 cites W2470368200 @default.
- W3132609532 cites W2561704874 @default.
- W3132609532 cites W2580949616 @default.
- W3132609532 cites W2607256519 @default.
- W3132609532 cites W2749243025 @default.
- W3132609532 cites W2967547550 @default.
- W3132609532 cites W2988689682 @default.
- W3132609532 cites W3012164575 @default.
- W3132609532 doi "https://doi.org/10.1007/978-981-33-6400-4_11" @default.
- W3132609532 hasPublicationYear "2021" @default.
- W3132609532 type Work @default.
- W3132609532 sameAs 3132609532 @default.
- W3132609532 citedByCount "3" @default.
- W3132609532 countsByYear W31326095322021 @default.
- W3132609532 countsByYear W31326095322022 @default.
- W3132609532 countsByYear W31326095322023 @default.
- W3132609532 crossrefType "book-chapter" @default.
- W3132609532 hasAuthorship W3132609532A5043310804 @default.
- W3132609532 hasAuthorship W3132609532A5068543994 @default.
- W3132609532 hasConcept C101738243 @default.
- W3132609532 hasConcept C108583219 @default.
- W3132609532 hasConcept C119857082 @default.
- W3132609532 hasConcept C147168706 @default.
- W3132609532 hasConcept C154945302 @default.
- W3132609532 hasConcept C39890363 @default.
- W3132609532 hasConcept C41008148 @default.
- W3132609532 hasConcept C50644808 @default.
- W3132609532 hasConcept C8038995 @default.
- W3132609532 hasConcept C97541855 @default.
- W3132609532 hasConceptScore W3132609532C101738243 @default.
- W3132609532 hasConceptScore W3132609532C108583219 @default.
- W3132609532 hasConceptScore W3132609532C119857082 @default.
- W3132609532 hasConceptScore W3132609532C147168706 @default.
- W3132609532 hasConceptScore W3132609532C154945302 @default.
- W3132609532 hasConceptScore W3132609532C39890363 @default.
- W3132609532 hasConceptScore W3132609532C41008148 @default.
- W3132609532 hasConceptScore W3132609532C50644808 @default.
- W3132609532 hasConceptScore W3132609532C8038995 @default.
- W3132609532 hasConceptScore W3132609532C97541855 @default.
- W3132609532 hasLocation W31326095321 @default.
- W3132609532 hasOpenAccess W3132609532 @default.
- W3132609532 hasPrimaryLocation W31326095321 @default.
- W3132609532 hasRelatedWork W12582432 @default.
- W3132609532 hasRelatedWork W13678974 @default.
- W3132609532 hasRelatedWork W1455769 @default.
- W3132609532 hasRelatedWork W15135299 @default.
- W3132609532 hasRelatedWork W2533007 @default.
- W3132609532 hasRelatedWork W2683128 @default.
- W3132609532 hasRelatedWork W8636990 @default.
- W3132609532 hasRelatedWork W9190101 @default.
- W3132609532 hasRelatedWork W9321062 @default.
- W3132609532 hasRelatedWork W9770290 @default.
- W3132609532 isParatext "false" @default.
- W3132609532 isRetracted "false" @default.
- W3132609532 magId "3132609532" @default.
- W3132609532 workType "book-chapter" @default.