Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132661009> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3132661009 endingPage "226" @default.
- W3132661009 startingPage "209" @default.
- W3132661009 abstract "This paper proposes a new methodology to address the image quality problem encountered as the use of an unmanned aerial vehicle (UAV) in the field of bridge inspection increased. When inspecting a bridge, the image obtained from the UAV was degraded by various interference factors such as vibration, wind, and motion of UAV. Image quality degradation such as blur, noise, and low-resolution is a major obstacle in utilizing bridge inspection technology based on UAV. In particular, in the field of bridge inspection where damages must be accurately and quickly detected based on data obtained from UAV, these quality issues weaken the advantage of using UAVs by requiring re-take of images through re-flighting. Therefore, in this study, image quality assessment (IQA) based on local blur map (LBM) and image quality enhancement (IQE) using the variational Dirichlet (VD) kernel estimation were proposed as a solution to address the quality issues. First, image data was collected by setting different camera parameters for each bridge member. Second, a blur map was generated through discrete wavelet transform (DWT) and a new quality metric to measure the degree of blurriness was proposed. Third, for low-quality images with a large degree of blurriness, the blind kernel estimation and blind image deconvolution were performed to enhance the quality of images. In the validation tests, the proposed quality metric was applied to material image sets of bridge pier and deck taken from UAV, and its results were compared with those of other quality metrics based on singular value decomposition (SVD), sum of gray-intensity variance (SGV) and high-frequency multiscale fusion and sort transform (HiFST) methods. It was validated that the proposed IQA metric showed better classification performance on UAV images for bridge inspection through comparison with the classification results by human perception. In addition, by performing IQE, on average, 26% of blur was reduced, and the images with enhanced quality showed better damage detection performance through the deep learning model (i.e., mask and region-based convolutional neural network)." @default.
- W3132661009 created "2021-03-01" @default.
- W3132661009 creator A5010997600 @default.
- W3132661009 creator A5024828401 @default.
- W3132661009 creator A5037181168 @default.
- W3132661009 creator A5038550525 @default.
- W3132661009 creator A5068614761 @default.
- W3132661009 creator A5072352760 @default.
- W3132661009 date "2021-02-01" @default.
- W3132661009 modified "2023-09-23" @default.
- W3132661009 title "A new image-quality evaluating and enhancing methodology for bridge inspection using an unmanned aerial vehicle" @default.
- W3132661009 doi "https://doi.org/10.12989/sss.2021.27.2.209" @default.
- W3132661009 hasPublicationYear "2021" @default.
- W3132661009 type Work @default.
- W3132661009 sameAs 3132661009 @default.
- W3132661009 citedByCount "0" @default.
- W3132661009 crossrefType "journal-article" @default.
- W3132661009 hasAuthorship W3132661009A5010997600 @default.
- W3132661009 hasAuthorship W3132661009A5024828401 @default.
- W3132661009 hasAuthorship W3132661009A5037181168 @default.
- W3132661009 hasAuthorship W3132661009A5038550525 @default.
- W3132661009 hasAuthorship W3132661009A5068614761 @default.
- W3132661009 hasAuthorship W3132661009A5072352760 @default.
- W3132661009 hasConcept C106430172 @default.
- W3132661009 hasConcept C114614502 @default.
- W3132661009 hasConcept C115961682 @default.
- W3132661009 hasConcept C127413603 @default.
- W3132661009 hasConcept C154945302 @default.
- W3132661009 hasConcept C176217482 @default.
- W3132661009 hasConcept C21547014 @default.
- W3132661009 hasConcept C2777708103 @default.
- W3132661009 hasConcept C31972630 @default.
- W3132661009 hasConcept C33923547 @default.
- W3132661009 hasConcept C41008148 @default.
- W3132661009 hasConcept C55020928 @default.
- W3132661009 hasConcept C74193536 @default.
- W3132661009 hasConcept C9417928 @default.
- W3132661009 hasConceptScore W3132661009C106430172 @default.
- W3132661009 hasConceptScore W3132661009C114614502 @default.
- W3132661009 hasConceptScore W3132661009C115961682 @default.
- W3132661009 hasConceptScore W3132661009C127413603 @default.
- W3132661009 hasConceptScore W3132661009C154945302 @default.
- W3132661009 hasConceptScore W3132661009C176217482 @default.
- W3132661009 hasConceptScore W3132661009C21547014 @default.
- W3132661009 hasConceptScore W3132661009C2777708103 @default.
- W3132661009 hasConceptScore W3132661009C31972630 @default.
- W3132661009 hasConceptScore W3132661009C33923547 @default.
- W3132661009 hasConceptScore W3132661009C41008148 @default.
- W3132661009 hasConceptScore W3132661009C55020928 @default.
- W3132661009 hasConceptScore W3132661009C74193536 @default.
- W3132661009 hasConceptScore W3132661009C9417928 @default.
- W3132661009 hasIssue "2" @default.
- W3132661009 hasLocation W31326610091 @default.
- W3132661009 hasOpenAccess W3132661009 @default.
- W3132661009 hasPrimaryLocation W31326610091 @default.
- W3132661009 hasRelatedWork W1535651320 @default.
- W3132661009 hasRelatedWork W1586360373 @default.
- W3132661009 hasRelatedWork W2009729853 @default.
- W3132661009 hasRelatedWork W2042964758 @default.
- W3132661009 hasRelatedWork W2156044350 @default.
- W3132661009 hasRelatedWork W2187310875 @default.
- W3132661009 hasRelatedWork W2239904554 @default.
- W3132661009 hasRelatedWork W2355833310 @default.
- W3132661009 hasRelatedWork W2393286131 @default.
- W3132661009 hasRelatedWork W2510500859 @default.
- W3132661009 hasRelatedWork W2567473613 @default.
- W3132661009 hasRelatedWork W2574934504 @default.
- W3132661009 hasRelatedWork W2588232556 @default.
- W3132661009 hasRelatedWork W2964056851 @default.
- W3132661009 hasRelatedWork W2972812228 @default.
- W3132661009 hasRelatedWork W2980440619 @default.
- W3132661009 hasRelatedWork W2815304337 @default.
- W3132661009 hasRelatedWork W2864756735 @default.
- W3132661009 hasRelatedWork W2956163784 @default.
- W3132661009 hasRelatedWork W2991818559 @default.
- W3132661009 hasVolume "27" @default.
- W3132661009 isParatext "false" @default.
- W3132661009 isRetracted "false" @default.
- W3132661009 magId "3132661009" @default.
- W3132661009 workType "article" @default.