Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132741560> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3132741560 abstract "Bayesian networks (BNs) are a widely used graphical model in machine learning. As learning the structure of BNs is NP-hard, high-performance computing methods are necessary for constructing large-scale networks. In this paper, we present a parallel framework to scale BN structure learning algorithms to tens of thousands of variables. Our framework is applicable to learning algorithms that rely on the discovery of Markov blankets (MBs) as an intermediate step. We demonstrate the applicability of our framework by parallelizing three different algorithms: Grow-Shrink (GS), Incremental Association MB (IAMB), and Interleaved IAMB (Inter-IAMB). Our implementations are able to construct BNs from real data sets with tens of thousands of variables and thousands of observations in less than a minute on 1024 cores, with a speedup of up to 845X and 82.5% efficiency. Furthermore, we demonstrate using simulated data sets that our proposed parallel framework can scale to BNs of even higher dimensionality." @default.
- W3132741560 created "2021-03-01" @default.
- W3132741560 creator A5059632472 @default.
- W3132741560 creator A5070968071 @default.
- W3132741560 creator A5074347913 @default.
- W3132741560 date "2020-11-01" @default.
- W3132741560 modified "2023-09-23" @default.
- W3132741560 title "A Parallel Framework for Constraint-Based Bayesian Network Learning via Markov Blanket Discovery" @default.
- W3132741560 cites W1517993545 @default.
- W3132741560 cites W1975062332 @default.
- W3132741560 cites W2001914359 @default.
- W3132741560 cites W2013374740 @default.
- W3132741560 cites W2021368287 @default.
- W3132741560 cites W2070480084 @default.
- W3132741560 cites W2094171104 @default.
- W3132741560 cites W2115984935 @default.
- W3132741560 cites W2128088446 @default.
- W3132741560 cites W2137559422 @default.
- W3132741560 cites W2139865581 @default.
- W3132741560 cites W2165190832 @default.
- W3132741560 cites W2396961413 @default.
- W3132741560 cites W2416669081 @default.
- W3132741560 cites W2485657344 @default.
- W3132741560 cites W2557632452 @default.
- W3132741560 cites W2611370172 @default.
- W3132741560 cites W2794988934 @default.
- W3132741560 cites W2796216341 @default.
- W3132741560 cites W2798124328 @default.
- W3132741560 cites W2890820050 @default.
- W3132741560 cites W2942757851 @default.
- W3132741560 cites W2945976633 @default.
- W3132741560 cites W2949847103 @default.
- W3132741560 cites W2954503794 @default.
- W3132741560 cites W2964239418 @default.
- W3132741560 cites W2989713062 @default.
- W3132741560 cites W3100028127 @default.
- W3132741560 cites W4236354166 @default.
- W3132741560 cites W4251630537 @default.
- W3132741560 doi "https://doi.org/10.1109/sc41405.2020.00011" @default.
- W3132741560 hasPublicationYear "2020" @default.
- W3132741560 type Work @default.
- W3132741560 sameAs 3132741560 @default.
- W3132741560 citedByCount "8" @default.
- W3132741560 countsByYear W31327415602022 @default.
- W3132741560 countsByYear W31327415602023 @default.
- W3132741560 crossrefType "proceedings-article" @default.
- W3132741560 hasAuthorship W3132741560A5059632472 @default.
- W3132741560 hasAuthorship W3132741560A5070968071 @default.
- W3132741560 hasAuthorship W3132741560A5074347913 @default.
- W3132741560 hasConcept C111030470 @default.
- W3132741560 hasConcept C119857082 @default.
- W3132741560 hasConcept C123867240 @default.
- W3132741560 hasConcept C127413603 @default.
- W3132741560 hasConcept C154945302 @default.
- W3132741560 hasConcept C155846161 @default.
- W3132741560 hasConcept C163836022 @default.
- W3132741560 hasConcept C173608175 @default.
- W3132741560 hasConcept C2776036281 @default.
- W3132741560 hasConcept C33724603 @default.
- W3132741560 hasConcept C41008148 @default.
- W3132741560 hasConcept C54907487 @default.
- W3132741560 hasConcept C68339613 @default.
- W3132741560 hasConcept C78519656 @default.
- W3132741560 hasConcept C80444323 @default.
- W3132741560 hasConcept C98763669 @default.
- W3132741560 hasConceptScore W3132741560C111030470 @default.
- W3132741560 hasConceptScore W3132741560C119857082 @default.
- W3132741560 hasConceptScore W3132741560C123867240 @default.
- W3132741560 hasConceptScore W3132741560C127413603 @default.
- W3132741560 hasConceptScore W3132741560C154945302 @default.
- W3132741560 hasConceptScore W3132741560C155846161 @default.
- W3132741560 hasConceptScore W3132741560C163836022 @default.
- W3132741560 hasConceptScore W3132741560C173608175 @default.
- W3132741560 hasConceptScore W3132741560C2776036281 @default.
- W3132741560 hasConceptScore W3132741560C33724603 @default.
- W3132741560 hasConceptScore W3132741560C41008148 @default.
- W3132741560 hasConceptScore W3132741560C54907487 @default.
- W3132741560 hasConceptScore W3132741560C68339613 @default.
- W3132741560 hasConceptScore W3132741560C78519656 @default.
- W3132741560 hasConceptScore W3132741560C80444323 @default.
- W3132741560 hasConceptScore W3132741560C98763669 @default.
- W3132741560 hasFunder F4320306076 @default.
- W3132741560 hasLocation W31327415601 @default.
- W3132741560 hasOpenAccess W3132741560 @default.
- W3132741560 hasPrimaryLocation W31327415601 @default.
- W3132741560 hasRelatedWork W1525576885 @default.
- W3132741560 hasRelatedWork W1577269914 @default.
- W3132741560 hasRelatedWork W195533749 @default.
- W3132741560 hasRelatedWork W2188106786 @default.
- W3132741560 hasRelatedWork W2511279186 @default.
- W3132741560 hasRelatedWork W2963058055 @default.
- W3132741560 hasRelatedWork W3044577214 @default.
- W3132741560 hasRelatedWork W3087217272 @default.
- W3132741560 hasRelatedWork W3153843651 @default.
- W3132741560 hasRelatedWork W4287710441 @default.
- W3132741560 isParatext "false" @default.
- W3132741560 isRetracted "false" @default.
- W3132741560 magId "3132741560" @default.
- W3132741560 workType "article" @default.