Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132783142> ?p ?o ?g. }
- W3132783142 endingPage "159238" @default.
- W3132783142 startingPage "159238" @default.
- W3132783142 abstract "Abstract Mg–Gd–Ag-based alloys have attracted considerable attention in recent years owing to their high strength. However, their characteristic mechanical behavior remains unclear. Herein, the tensile anisotropy, tension–compression asymmetry, and strain-hardening behavior of a high-performance Mg–10.6Gd–2Ag (wt%) alloy fabricated by equal-channel angular pressing (ECAP) were systematically investigated and correlated with the evolution of microstructure and texture. The ECAP alloy exhibited synchronously enhanced tensile strength and ductility along all three directions compared with the as-cast alloy as well as improved compressive strength along the extrusion direction (ED) accompanied by slightly decreased ductility. In contrast to the pronounced reversed yield asymmetry for the as-cast alloy, the ECAP alloy exhibited a weak direct yield asymmetry along the ED. After aging, the tensile and compressive yield strengths of the ECAP alloy increased to 409 and 402 MPa, respectively, owing to the coprecipitation of basal γ'' and prismatic β' nanoplates, manifesting a near-symmetric yield response. Moreover, two strain-hardening stages (stage I and stage III) were detected in tensile deformation for all the investigated alloys, while all three stages were observed in compressive deformation. Both the strain-hardening ability and strength in the ECAP alloy before and after aging decreased slightly in the following order: ED > transverse direction (TD) > normal direction (ND), representing low anisotropy. In short, the present ECAP Mg–10.6Gd–2Ag alloy exhibited the advantages of high strength and ductility, near-symmetric yield response, and low anisotropy." @default.
- W3132783142 created "2021-03-01" @default.
- W3132783142 creator A5023567374 @default.
- W3132783142 creator A5039808954 @default.
- W3132783142 creator A5049453342 @default.
- W3132783142 creator A5066429789 @default.
- W3132783142 creator A5073580495 @default.
- W3132783142 date "2021-07-01" @default.
- W3132783142 modified "2023-09-29" @default.
- W3132783142 title "Revealing the tensile anisotropy, tension–compression asymmetry, and strain-hardening behavior of a high-performance Mg–Gd–Ag alloy" @default.
- W3132783142 cites W1245144734 @default.
- W3132783142 cites W1745854444 @default.
- W3132783142 cites W1972095222 @default.
- W3132783142 cites W1975603057 @default.
- W3132783142 cites W1978987740 @default.
- W3132783142 cites W1980967406 @default.
- W3132783142 cites W1986015991 @default.
- W3132783142 cites W1993073707 @default.
- W3132783142 cites W2001904273 @default.
- W3132783142 cites W2002456994 @default.
- W3132783142 cites W2005952394 @default.
- W3132783142 cites W2009098341 @default.
- W3132783142 cites W2015565909 @default.
- W3132783142 cites W2024851152 @default.
- W3132783142 cites W2038963896 @default.
- W3132783142 cites W2042444262 @default.
- W3132783142 cites W2049137372 @default.
- W3132783142 cites W2049525148 @default.
- W3132783142 cites W2051142855 @default.
- W3132783142 cites W2052661574 @default.
- W3132783142 cites W2053586398 @default.
- W3132783142 cites W2055959600 @default.
- W3132783142 cites W2057241778 @default.
- W3132783142 cites W2070366687 @default.
- W3132783142 cites W2081344683 @default.
- W3132783142 cites W2091524786 @default.
- W3132783142 cites W2103130592 @default.
- W3132783142 cites W2167667806 @default.
- W3132783142 cites W2297899314 @default.
- W3132783142 cites W2556626081 @default.
- W3132783142 cites W2563976378 @default.
- W3132783142 cites W2572812938 @default.
- W3132783142 cites W2589833404 @default.
- W3132783142 cites W2606587366 @default.
- W3132783142 cites W2732491968 @default.
- W3132783142 cites W2740208773 @default.
- W3132783142 cites W2753463643 @default.
- W3132783142 cites W2759966357 @default.
- W3132783142 cites W2780071952 @default.
- W3132783142 cites W2810826594 @default.
- W3132783142 cites W2884864858 @default.
- W3132783142 cites W2888816698 @default.
- W3132783142 cites W2900486273 @default.
- W3132783142 cites W2902188488 @default.
- W3132783142 cites W2904788779 @default.
- W3132783142 cites W2905375705 @default.
- W3132783142 cites W2921892992 @default.
- W3132783142 cites W2938102774 @default.
- W3132783142 cites W2939349920 @default.
- W3132783142 cites W2946875483 @default.
- W3132783142 cites W2980744501 @default.
- W3132783142 cites W2985195450 @default.
- W3132783142 cites W2995463170 @default.
- W3132783142 cites W3000377635 @default.
- W3132783142 cites W3004095883 @default.
- W3132783142 cites W3005047501 @default.
- W3132783142 cites W3005473628 @default.
- W3132783142 cites W3010127574 @default.
- W3132783142 cites W3011961763 @default.
- W3132783142 cites W3014008899 @default.
- W3132783142 cites W3022481813 @default.
- W3132783142 cites W3024460220 @default.
- W3132783142 cites W3026777202 @default.
- W3132783142 cites W3027681797 @default.
- W3132783142 cites W3027773172 @default.
- W3132783142 cites W3033042500 @default.
- W3132783142 cites W3039009042 @default.
- W3132783142 cites W3039043266 @default.
- W3132783142 cites W3040837509 @default.
- W3132783142 cites W3046957360 @default.
- W3132783142 cites W3083879743 @default.
- W3132783142 cites W3090363613 @default.
- W3132783142 cites W3090821621 @default.
- W3132783142 cites W3091742030 @default.
- W3132783142 cites W3092542990 @default.
- W3132783142 cites W3092578923 @default.
- W3132783142 cites W3094620877 @default.
- W3132783142 cites W3096372912 @default.
- W3132783142 cites W3109243702 @default.
- W3132783142 cites W3109537678 @default.
- W3132783142 cites W3114912308 @default.
- W3132783142 cites W3116936443 @default.
- W3132783142 cites W3121977340 @default.
- W3132783142 cites W3128756194 @default.
- W3132783142 cites W4246368354 @default.
- W3132783142 cites W658838585 @default.
- W3132783142 doi "https://doi.org/10.1016/j.jallcom.2021.159238" @default.
- W3132783142 hasPublicationYear "2021" @default.