Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132900467> ?p ?o ?g. }
- W3132900467 endingPage "125520" @default.
- W3132900467 startingPage "125520" @default.
- W3132900467 abstract "For improving the understanding of anaerobic degradation mechanism of fluoroquinolone antibiotics (FQs), the degradation of a representative FQs, levofloxacin (LEV), by six enriched anaerobic consortia were explored in this study. The effect of sulfate and nitrate as the electron acceptor and glucose as the carbon source on LEV anaerobic degradation were investigated. Addition of glucose and nitrate alone deteriorated LEV removal from 36.5% to 32.7% and 29.1%, respectively. Addition of sulfate slightly improved LEV removal to 39.6%, while simultaneous addition of glucose and sulfate significantly enhanced LEV removal to 53.1%. Twelve biodegradation intermediates were identified, which indicated that cleavage of piperazine ring is prior to that of quinolone ring, and hydroxylation, defluorination, demethylation, and decarboxylation were the primary steps of LEV anaerobic degradation. Lactobacillus, unclassified _f_Enterobacteriaceae, and Bacillus were enriched by simultaneous addition of glucose and sulfate, with relative abundance of 63.5%, 32.7%, and 3.3%, respectively. The predicted high gene abundance of xenobiotics biodegradation & metabolism, carbohydrate metabolism, and assimilatory sulfate reduction in the consortium, indicated a co-metabolism between carbohydrate metabolism, sulfate metabolism, and LEV degradation under glucose and sulfate added condition. The study revealed that simultaneous addition of glucose and sulfate is the favorable condition for LEV anaerobic degradation." @default.
- W3132900467 created "2021-03-01" @default.
- W3132900467 creator A5014672987 @default.
- W3132900467 creator A5038451693 @default.
- W3132900467 creator A5046324594 @default.
- W3132900467 creator A5048535538 @default.
- W3132900467 creator A5065098354 @default.
- W3132900467 creator A5070633162 @default.
- W3132900467 creator A5073501391 @default.
- W3132900467 creator A5083629941 @default.
- W3132900467 creator A5086664284 @default.
- W3132900467 date "2021-07-01" @default.
- W3132900467 modified "2023-10-14" @default.
- W3132900467 title "Anaerobic biodegradation of levofloxacin by enriched microbial consortia: Effect of electron acceptors and carbon source" @default.
- W3132900467 cites W1603808966 @default.
- W3132900467 cites W166924263 @default.
- W3132900467 cites W1964334949 @default.
- W3132900467 cites W1974898319 @default.
- W3132900467 cites W1975947197 @default.
- W3132900467 cites W1977040721 @default.
- W3132900467 cites W1980957896 @default.
- W3132900467 cites W1996508379 @default.
- W3132900467 cites W2001610379 @default.
- W3132900467 cites W2003656690 @default.
- W3132900467 cites W2014832032 @default.
- W3132900467 cites W2017295486 @default.
- W3132900467 cites W2020466555 @default.
- W3132900467 cites W2024418453 @default.
- W3132900467 cites W2032287194 @default.
- W3132900467 cites W2037977783 @default.
- W3132900467 cites W2039282417 @default.
- W3132900467 cites W2045664387 @default.
- W3132900467 cites W2045918980 @default.
- W3132900467 cites W2045935930 @default.
- W3132900467 cites W2047370410 @default.
- W3132900467 cites W2050508492 @default.
- W3132900467 cites W2051044941 @default.
- W3132900467 cites W2063483776 @default.
- W3132900467 cites W2069431280 @default.
- W3132900467 cites W2072970694 @default.
- W3132900467 cites W2074013861 @default.
- W3132900467 cites W2076288335 @default.
- W3132900467 cites W2076552682 @default.
- W3132900467 cites W2077880311 @default.
- W3132900467 cites W2081296998 @default.
- W3132900467 cites W2087781543 @default.
- W3132900467 cites W2093954861 @default.
- W3132900467 cites W2097100558 @default.
- W3132900467 cites W2110300022 @default.
- W3132900467 cites W2118606226 @default.
- W3132900467 cites W2121084518 @default.
- W3132900467 cites W2124351063 @default.
- W3132900467 cites W2170606382 @default.
- W3132900467 cites W2225919185 @default.
- W3132900467 cites W2233868349 @default.
- W3132900467 cites W2318495629 @default.
- W3132900467 cites W2320990011 @default.
- W3132900467 cites W2466237413 @default.
- W3132900467 cites W2468483935 @default.
- W3132900467 cites W2547252454 @default.
- W3132900467 cites W2553964255 @default.
- W3132900467 cites W2570023916 @default.
- W3132900467 cites W2588640621 @default.
- W3132900467 cites W2614888293 @default.
- W3132900467 cites W2617000666 @default.
- W3132900467 cites W2626605965 @default.
- W3132900467 cites W2753660064 @default.
- W3132900467 cites W2765970410 @default.
- W3132900467 cites W2771677008 @default.
- W3132900467 cites W2773014560 @default.
- W3132900467 cites W2773043059 @default.
- W3132900467 cites W2788747340 @default.
- W3132900467 cites W2790961933 @default.
- W3132900467 cites W2791781902 @default.
- W3132900467 cites W2792738923 @default.
- W3132900467 cites W2806585162 @default.
- W3132900467 cites W2806943633 @default.
- W3132900467 cites W2885510559 @default.
- W3132900467 cites W2898614328 @default.
- W3132900467 cites W2903616970 @default.
- W3132900467 cites W2913488516 @default.
- W3132900467 cites W2948702625 @default.
- W3132900467 cites W2977759320 @default.
- W3132900467 cites W2983829638 @default.
- W3132900467 cites W2991493743 @default.
- W3132900467 cites W3009122646 @default.
- W3132900467 cites W3010510295 @default.
- W3132900467 cites W3012869291 @default.
- W3132900467 cites W4235835657 @default.
- W3132900467 cites W4294216483 @default.
- W3132900467 doi "https://doi.org/10.1016/j.jhazmat.2021.125520" @default.
- W3132900467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33677321" @default.
- W3132900467 hasPublicationYear "2021" @default.
- W3132900467 type Work @default.
- W3132900467 sameAs 3132900467 @default.
- W3132900467 citedByCount "33" @default.
- W3132900467 countsByYear W31329004672021 @default.
- W3132900467 countsByYear W31329004672022 @default.