Matches in SemOpenAlex for { <https://semopenalex.org/work/W3132927229> ?p ?o ?g. }
- W3132927229 endingPage "359" @default.
- W3132927229 startingPage "359" @default.
- W3132927229 abstract "Medulloblastoma (MB) is a dangerous malignant pediatric brain tumor that could lead to death. It is considered the most common pediatric cancerous brain tumor. Precise and timely diagnosis of pediatric MB and its four subtypes (defined by the World Health Organization (WHO)) is essential to decide the appropriate follow-up plan and suitable treatments to prevent its progression and reduce mortality rates. Histopathology is the gold standard modality for the diagnosis of MB and its subtypes, but manual diagnosis via a pathologist is very complicated, needs excessive time, and is subjective to the pathologists’ expertise and skills, which may lead to variability in the diagnosis or misdiagnosis. The main purpose of the paper is to propose a time-efficient and reliable computer-aided diagnosis (CADx), namely MB-AI-His, for the automatic diagnosis of pediatric MB and its subtypes from histopathological images. The main challenge in this work is the lack of datasets available for the diagnosis of pediatric MB and its four subtypes and the limited related work. Related studies are based on either textural analysis or deep learning (DL) feature extraction methods. These studies used individual features to perform the classification task. However, MB-AI-His combines the benefits of DL techniques and textural analysis feature extraction methods through a cascaded manner. First, it uses three DL convolutional neural networks (CNNs), including DenseNet-201, MobileNet, and ResNet-50 CNNs to extract spatial DL features. Next, it extracts time-frequency features from the spatial DL features based on the discrete wavelet transform (DWT), which is a textural analysis method. Finally, MB-AI-His fuses the three spatial-time-frequency features generated from the three CNNs and DWT using the discrete cosine transform (DCT) and principal component analysis (PCA) to produce a time-efficient CADx system. MB-AI-His merges the privileges of different CNN architectures. MB-AI-His has a binary classification level for classifying among normal and abnormal MB images, and a multi-classification level to classify among the four subtypes of MB. The results of MB-AI-His show that it is accurate and reliable for both the binary and multi-class classification levels. It is also a time-efficient system as both the PCA and DCT methods have efficiently reduced the training execution time. The performance of MB-AI-His is compared with related CADx systems, and the comparison verified the powerfulness of MB-AI-His and its outperforming results. Therefore, it can support pathologists in the accurate and reliable diagnosis of MB and its subtypes from histopathological images. It can also reduce the time and cost of the diagnosis procedure which will correspondingly lead to lower death rates." @default.
- W3132927229 created "2021-03-01" @default.
- W3132927229 creator A5036173588 @default.
- W3132927229 date "2021-02-20" @default.
- W3132927229 modified "2023-10-02" @default.
- W3132927229 title "MB-AI-His: Histopathological Diagnosis of Pediatric Medulloblastoma and its Subtypes via AI" @default.
- W3132927229 cites W1101750244 @default.
- W3132927229 cites W2006322106 @default.
- W3132927229 cites W2018703285 @default.
- W3132927229 cites W2020778771 @default.
- W3132927229 cites W2023244209 @default.
- W3132927229 cites W2040032582 @default.
- W3132927229 cites W2044274282 @default.
- W3132927229 cites W2106927076 @default.
- W3132927229 cites W2127710322 @default.
- W3132927229 cites W2129967584 @default.
- W3132927229 cites W2165551601 @default.
- W3132927229 cites W2171150197 @default.
- W3132927229 cites W2502949459 @default.
- W3132927229 cites W2526511911 @default.
- W3132927229 cites W2742266030 @default.
- W3132927229 cites W2755333890 @default.
- W3132927229 cites W2758873854 @default.
- W3132927229 cites W2767121451 @default.
- W3132927229 cites W2768956845 @default.
- W3132927229 cites W2776712276 @default.
- W3132927229 cites W2792985042 @default.
- W3132927229 cites W2804809630 @default.
- W3132927229 cites W2811058369 @default.
- W3132927229 cites W2885361335 @default.
- W3132927229 cites W2891336752 @default.
- W3132927229 cites W2902155700 @default.
- W3132927229 cites W2902395200 @default.
- W3132927229 cites W2906302663 @default.
- W3132927229 cites W2939354476 @default.
- W3132927229 cites W2959506393 @default.
- W3132927229 cites W2970152602 @default.
- W3132927229 cites W2972888337 @default.
- W3132927229 cites W2981544556 @default.
- W3132927229 cites W2999749877 @default.
- W3132927229 cites W3002139205 @default.
- W3132927229 cites W3007680165 @default.
- W3132927229 cites W3013432857 @default.
- W3132927229 cites W3013621817 @default.
- W3132927229 cites W3015961442 @default.
- W3132927229 cites W3023481128 @default.
- W3132927229 cites W3091575954 @default.
- W3132927229 cites W3091929952 @default.
- W3132927229 cites W3104608945 @default.
- W3132927229 cites W3126634865 @default.
- W3132927229 doi "https://doi.org/10.3390/diagnostics11020359" @default.
- W3132927229 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7924641" @default.
- W3132927229 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33672752" @default.
- W3132927229 hasPublicationYear "2021" @default.
- W3132927229 type Work @default.
- W3132927229 sameAs 3132927229 @default.
- W3132927229 citedByCount "34" @default.
- W3132927229 countsByYear W31329272292021 @default.
- W3132927229 countsByYear W31329272292022 @default.
- W3132927229 countsByYear W31329272292023 @default.
- W3132927229 crossrefType "journal-article" @default.
- W3132927229 hasAuthorship W3132927229A5036173588 @default.
- W3132927229 hasBestOaLocation W31329272291 @default.
- W3132927229 hasConcept C119857082 @default.
- W3132927229 hasConcept C126838900 @default.
- W3132927229 hasConcept C138885662 @default.
- W3132927229 hasConcept C142724271 @default.
- W3132927229 hasConcept C153180895 @default.
- W3132927229 hasConcept C154945302 @default.
- W3132927229 hasConcept C2776401178 @default.
- W3132927229 hasConcept C2779549770 @default.
- W3132927229 hasConcept C2780789225 @default.
- W3132927229 hasConcept C41008148 @default.
- W3132927229 hasConcept C41895202 @default.
- W3132927229 hasConcept C52622490 @default.
- W3132927229 hasConcept C71924100 @default.
- W3132927229 hasConcept C81363708 @default.
- W3132927229 hasConceptScore W3132927229C119857082 @default.
- W3132927229 hasConceptScore W3132927229C126838900 @default.
- W3132927229 hasConceptScore W3132927229C138885662 @default.
- W3132927229 hasConceptScore W3132927229C142724271 @default.
- W3132927229 hasConceptScore W3132927229C153180895 @default.
- W3132927229 hasConceptScore W3132927229C154945302 @default.
- W3132927229 hasConceptScore W3132927229C2776401178 @default.
- W3132927229 hasConceptScore W3132927229C2779549770 @default.
- W3132927229 hasConceptScore W3132927229C2780789225 @default.
- W3132927229 hasConceptScore W3132927229C41008148 @default.
- W3132927229 hasConceptScore W3132927229C41895202 @default.
- W3132927229 hasConceptScore W3132927229C52622490 @default.
- W3132927229 hasConceptScore W3132927229C71924100 @default.
- W3132927229 hasConceptScore W3132927229C81363708 @default.
- W3132927229 hasIssue "2" @default.
- W3132927229 hasLocation W31329272291 @default.
- W3132927229 hasLocation W31329272292 @default.
- W3132927229 hasLocation W31329272293 @default.
- W3132927229 hasOpenAccess W3132927229 @default.
- W3132927229 hasPrimaryLocation W31329272291 @default.
- W3132927229 hasRelatedWork W2144059113 @default.