Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133054736> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3133054736 endingPage "225" @default.
- W3133054736 startingPage "217" @default.
- W3133054736 abstract "We designed 5 convolutional neural network (CNN) models and ensemble models to differentiate malignant and benign thyroid nodules on CT, and compared the diagnostic performance of CNN models with that of radiologists.We retrospectively included CT images of 880 patients with 986 thyroid nodules confirmed by surgical pathology between July 2017 and December 2019. Two radiologists retrospectively diagnosed benign and malignant thyroid nodules on CT images in a test set. Five CNNs (ResNet50, DenseNet121, DenseNet169, SE-ResNeXt50, and Xception) were trained-validated and tested using 788 and 198 thyroid nodule CT images, respectively. Then, we selected the 3 models with the best diagnostic performance on the test set for the model ensemble. We then compared the diagnostic performance of 2 radiologists with 5 CNN models and the integrated model.Of the 986 thyroid nodules, 541 were malignant, and 445 were benign. The area under the curves (AUCs) for diagnosing thyroid malignancy was 0.587-0.754 for 2 radiologists. The AUCs for diagnosing thyroid malignancy for the 5 CNN models and ensemble model was 0.901-0.947. There were significant differences in AUC between the radiologists' models and the CNN models (p < 0.05). The ensemble model had the highest AUC value.Five CNN models and an ensemble model performed better than radiologists in distinguishing malignant thyroid nodules from benign nodules on CT. The diagnostic performance of the ensemble model improved and showed good potential." @default.
- W3133054736 created "2021-03-01" @default.
- W3133054736 creator A5022256556 @default.
- W3133054736 creator A5033689443 @default.
- W3133054736 creator A5048101049 @default.
- W3133054736 creator A5053979421 @default.
- W3133054736 creator A5063512998 @default.
- W3133054736 creator A5074966676 @default.
- W3133054736 creator A5085193896 @default.
- W3133054736 creator A5086595438 @default.
- W3133054736 creator A5091191988 @default.
- W3133054736 date "2021-06-30" @default.
- W3133054736 modified "2023-10-14" @default.
- W3133054736 title "A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images" @default.
- W3133054736 doi "https://doi.org/10.5603/ep.a2021.0015" @default.
- W3133054736 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33619712" @default.
- W3133054736 hasPublicationYear "2021" @default.
- W3133054736 type Work @default.
- W3133054736 sameAs 3133054736 @default.
- W3133054736 citedByCount "10" @default.
- W3133054736 countsByYear W31330547362022 @default.
- W3133054736 countsByYear W31330547362023 @default.
- W3133054736 crossrefType "journal-article" @default.
- W3133054736 hasAuthorship W3133054736A5022256556 @default.
- W3133054736 hasAuthorship W3133054736A5033689443 @default.
- W3133054736 hasAuthorship W3133054736A5048101049 @default.
- W3133054736 hasAuthorship W3133054736A5053979421 @default.
- W3133054736 hasAuthorship W3133054736A5063512998 @default.
- W3133054736 hasAuthorship W3133054736A5074966676 @default.
- W3133054736 hasAuthorship W3133054736A5085193896 @default.
- W3133054736 hasAuthorship W3133054736A5086595438 @default.
- W3133054736 hasAuthorship W3133054736A5091191988 @default.
- W3133054736 hasBestOaLocation W31330547361 @default.
- W3133054736 hasConcept C126322002 @default.
- W3133054736 hasConcept C126838900 @default.
- W3133054736 hasConcept C142724271 @default.
- W3133054736 hasConcept C151730666 @default.
- W3133054736 hasConcept C154945302 @default.
- W3133054736 hasConcept C2776731575 @default.
- W3133054736 hasConcept C2779022025 @default.
- W3133054736 hasConcept C2779399171 @default.
- W3133054736 hasConcept C41008148 @default.
- W3133054736 hasConcept C526584372 @default.
- W3133054736 hasConcept C71924100 @default.
- W3133054736 hasConcept C81363708 @default.
- W3133054736 hasConcept C86803240 @default.
- W3133054736 hasConceptScore W3133054736C126322002 @default.
- W3133054736 hasConceptScore W3133054736C126838900 @default.
- W3133054736 hasConceptScore W3133054736C142724271 @default.
- W3133054736 hasConceptScore W3133054736C151730666 @default.
- W3133054736 hasConceptScore W3133054736C154945302 @default.
- W3133054736 hasConceptScore W3133054736C2776731575 @default.
- W3133054736 hasConceptScore W3133054736C2779022025 @default.
- W3133054736 hasConceptScore W3133054736C2779399171 @default.
- W3133054736 hasConceptScore W3133054736C41008148 @default.
- W3133054736 hasConceptScore W3133054736C526584372 @default.
- W3133054736 hasConceptScore W3133054736C71924100 @default.
- W3133054736 hasConceptScore W3133054736C81363708 @default.
- W3133054736 hasConceptScore W3133054736C86803240 @default.
- W3133054736 hasIssue "3" @default.
- W3133054736 hasLocation W31330547361 @default.
- W3133054736 hasLocation W31330547362 @default.
- W3133054736 hasOpenAccess W3133054736 @default.
- W3133054736 hasPrimaryLocation W31330547361 @default.
- W3133054736 hasRelatedWork W2157743352 @default.
- W3133054736 hasRelatedWork W2412707795 @default.
- W3133054736 hasRelatedWork W2525654528 @default.
- W3133054736 hasRelatedWork W2747123865 @default.
- W3133054736 hasRelatedWork W3129675663 @default.
- W3133054736 hasRelatedWork W4210537256 @default.
- W3133054736 hasRelatedWork W4290792875 @default.
- W3133054736 hasRelatedWork W4312247499 @default.
- W3133054736 hasRelatedWork W2998403514 @default.
- W3133054736 hasRelatedWork W3160222016 @default.
- W3133054736 hasVolume "72" @default.
- W3133054736 isParatext "false" @default.
- W3133054736 isRetracted "false" @default.
- W3133054736 magId "3133054736" @default.
- W3133054736 workType "article" @default.