Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133093905> ?p ?o ?g. }
- W3133093905 endingPage "A50" @default.
- W3133093905 startingPage "A50" @default.
- W3133093905 abstract "Context. Point sources are one of the main contaminants to the recovery of the cosmic microwave background signal at small scales, and their careful detection will be important for the next generation of cosmic microwave background experiments like LiteBird. Aims. We want to develop a method based on fully convolutional networks to detect sources in realistic simulations, and to compare its performance against one of the most used point source detection method in this context, the Mexican hat wavelet 2 (MHW2). The frequencies for our analysis are the 143, 217, and 353 GHz Planck channels. Methods. We produce realistic simulations of point sources at each frequency taking into account potential contaminating signals as the cosmic microwave background, the cosmic infrared background, the Galactic thermal emission, the thermal Sunyaev-Zel’dovich effect, and the instrumental and point source shot noises. We first produce a set of training simulations at 217 GHz to train the neural network that we named PoSeIDoN. Then we apply both PoSeIDoN and the MHW2 to recover the point sources in the validating simulations at all the frequencies, comparing the results by estimating the reliability, completeness, and flux density estimation accuracy. Moreover, the receiver operating characteristic (ROC) curves are computed in order to asses the methods’performance. Results. In the extra-galactic region with a 30° galactic cut, the neural network successfully recovers point sources at 90% completeness corresponding to 253, 126, and 250 mJy for 143, 217, and 353 GHz respectively. In the same validation simulations the wavelet with a 3 σ flux density detection limit recovers point sources up to 181, 102, and 153 mJy at 90% completeness. To reduce the number of spurious sources, we also apply a safer 4 σ flux density detection limit, the same as in the Planck catalogues, increasing the 90% completeness levels: 235, 137, and 192 mJy. In all cases PoSeIDoN produces a much lower number of spurious sources with respect to MHW2. As expected, the results on spurious sources for both techniques worsen when reducing the galactic cut to 10°. Conclusions. Our results suggest that using neural networks is a very promising approach for detecting point sources using data from cosmic microwave background experiments, providing overall better results in dealing with spurious sources with respect to the more usual filtering approaches. Moreover, PoSeIDoN gives competitive results even at the 217 GHz nearby channels where the network was not trained." @default.
- W3133093905 created "2021-03-01" @default.
- W3133093905 creator A5006484385 @default.
- W3133093905 creator A5024932406 @default.
- W3133093905 creator A5028402563 @default.
- W3133093905 creator A5042132634 @default.
- W3133093905 creator A5055298938 @default.
- W3133093905 creator A5056179832 @default.
- W3133093905 creator A5058965809 @default.
- W3133093905 creator A5067929455 @default.
- W3133093905 date "2021-04-01" @default.
- W3133093905 modified "2023-10-06" @default.
- W3133093905 title "Point source detection with fully convolutional networks" @default.
- W3133093905 cites W1585481480 @default.
- W3133093905 cites W1621862116 @default.
- W3133093905 cites W1726370773 @default.
- W3133093905 cites W1929426853 @default.
- W3133093905 cites W1931011441 @default.
- W3133093905 cites W1965170215 @default.
- W3133093905 cites W1965601576 @default.
- W3133093905 cites W1976579441 @default.
- W3133093905 cites W1978985672 @default.
- W3133093905 cites W1990402077 @default.
- W3133093905 cites W1993991965 @default.
- W3133093905 cites W2011301426 @default.
- W3133093905 cites W2013677542 @default.
- W3133093905 cites W2026369725 @default.
- W3133093905 cites W2037629290 @default.
- W3133093905 cites W2039570104 @default.
- W3133093905 cites W2040127547 @default.
- W3133093905 cites W2043721767 @default.
- W3133093905 cites W2047584536 @default.
- W3133093905 cites W2060505741 @default.
- W3133093905 cites W2061939373 @default.
- W3133093905 cites W2066894533 @default.
- W3133093905 cites W2084351296 @default.
- W3133093905 cites W2084377030 @default.
- W3133093905 cites W2086055384 @default.
- W3133093905 cites W2088321137 @default.
- W3133093905 cites W2093671563 @default.
- W3133093905 cites W2096624375 @default.
- W3133093905 cites W2116440023 @default.
- W3133093905 cites W2118059901 @default.
- W3133093905 cites W2128005732 @default.
- W3133093905 cites W2129153205 @default.
- W3133093905 cites W2133513342 @default.
- W3133093905 cites W2149476548 @default.
- W3133093905 cites W2149619218 @default.
- W3133093905 cites W2161023838 @default.
- W3133093905 cites W2189948602 @default.
- W3133093905 cites W2257919992 @default.
- W3133093905 cites W2592512793 @default.
- W3133093905 cites W2593003715 @default.
- W3133093905 cites W2594127091 @default.
- W3133093905 cites W2788236049 @default.
- W3133093905 cites W2883805197 @default.
- W3133093905 cites W2900466252 @default.
- W3133093905 cites W2919115771 @default.
- W3133093905 cites W2946232167 @default.
- W3133093905 cites W2948489233 @default.
- W3133093905 cites W2950688433 @default.
- W3133093905 cites W2996373516 @default.
- W3133093905 cites W3098003348 @default.
- W3133093905 cites W3098724574 @default.
- W3133093905 cites W3098899650 @default.
- W3133093905 cites W3099158584 @default.
- W3133093905 cites W3099248682 @default.
- W3133093905 cites W3099445393 @default.
- W3133093905 cites W3099837066 @default.
- W3133093905 cites W3101268311 @default.
- W3133093905 cites W3101728860 @default.
- W3133093905 cites W3102221029 @default.
- W3133093905 cites W3102290135 @default.
- W3133093905 cites W3104169888 @default.
- W3133093905 cites W3104807016 @default.
- W3133093905 cites W3105500447 @default.
- W3133093905 cites W3106149202 @default.
- W3133093905 cites W3121394119 @default.
- W3133093905 cites W3122112131 @default.
- W3133093905 cites W3123836592 @default.
- W3133093905 hasPublicationYear "2021" @default.
- W3133093905 type Work @default.
- W3133093905 sameAs 3133093905 @default.
- W3133093905 citedByCount "0" @default.
- W3133093905 crossrefType "journal-article" @default.
- W3133093905 hasAuthorship W3133093905A5006484385 @default.
- W3133093905 hasAuthorship W3133093905A5024932406 @default.
- W3133093905 hasAuthorship W3133093905A5028402563 @default.
- W3133093905 hasAuthorship W3133093905A5042132634 @default.
- W3133093905 hasAuthorship W3133093905A5055298938 @default.
- W3133093905 hasAuthorship W3133093905A5056179832 @default.
- W3133093905 hasAuthorship W3133093905A5058965809 @default.
- W3133093905 hasAuthorship W3133093905A5067929455 @default.
- W3133093905 hasBestOaLocation W31330939051 @default.
- W3133093905 hasConcept C103783831 @default.
- W3133093905 hasConcept C120665830 @default.
- W3133093905 hasConcept C121332964 @default.
- W3133093905 hasConcept C1276947 @default.