Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133121889> ?p ?o ?g. }
- W3133121889 endingPage "2660" @default.
- W3133121889 startingPage "2646" @default.
- W3133121889 abstract "Purpose Accurate dose calculation is a critical step in proton therapy. A novel machine learning‐based approach was proposed to achieve comparable accuracy to that of Monte Carlo simulation while reducing the computational time. Methods Computed tomography‐based patient phantoms were used and three treatment sites were selected (thorax, head, and abdomen), comprising different beam pathways and beam energies. The training data were generated using Monte Carlo simulations. A discovery cross‐domain generative adversarial network (DiscoGAN) was developed to perform the mapping between two domains: stopping power and dose, with HU values from CT images incorporated as auxiliary features. The accuracy of dose calculation was quantitatively evaluated in terms of mean relative error (MRE) and mean absolute error (MAE). The relationship between the DiscoGAN performance and other factors such as absolute dose, beam energy and location within the beam cross‐section (center and off‐center lines) was examined. Results The DiscoGAN model is found to be effective in dose calculation. For the abdominal case, the MRE is found to 1.47% (mean), 3.30% (maximum) and 0.67% (minimum). For the thoracic case, the MRE is found to ~2.43% (mean), 4.80% (maximum) and 0.71% (minimum). For the head case, the MRE is found to ~2.83% (mean), 4.84% (maximum) and 1.01% (minimum). Comparable accuracy is found in the independent validation dataset (different CT images), achieving a mean MRE of ~1.65% (thorax), 4.02% (head) and 1.64% (abdomen). For the energy span between 80 and 130 MeV, no strong dependency of accuracy on beam energy is found. The results imply that no systematic deviation, either over‐dose or under‐dose, occurs between the predicted dose and raw dose. Conclusion The DiscoGAN framework demonstrates great potential as a tool for dose calculation in proton therapy, achieving comparable accuracy yet being more efficient relative to Monte Carlo simulation. Its comparison with the pencil beam algorithm (PBA) will be the next step of our research. If successful, our proposed approach is expected to find its use in more advanced applications such as inverse planning and adaptive proton therapy." @default.
- W3133121889 created "2021-03-01" @default.
- W3133121889 creator A5003852242 @default.
- W3133121889 creator A5005651514 @default.
- W3133121889 creator A5026676545 @default.
- W3133121889 creator A5037254879 @default.
- W3133121889 creator A5055303244 @default.
- W3133121889 creator A5079854850 @default.
- W3133121889 date "2021-03-16" @default.
- W3133121889 modified "2023-10-11" @default.
- W3133121889 title "Dose calculation in proton therapy using a discovery cross‐domain generative adversarial network (DiscoGAN)" @default.
- W3133121889 cites W1970323811 @default.
- W3133121889 cites W1994534668 @default.
- W3133121889 cites W2022985124 @default.
- W3133121889 cites W2038196526 @default.
- W3133121889 cites W2045415729 @default.
- W3133121889 cites W2050319405 @default.
- W3133121889 cites W2050892163 @default.
- W3133121889 cites W2062740540 @default.
- W3133121889 cites W2068878119 @default.
- W3133121889 cites W2071632269 @default.
- W3133121889 cites W2082859509 @default.
- W3133121889 cites W2085188303 @default.
- W3133121889 cites W2087670959 @default.
- W3133121889 cites W2133531250 @default.
- W3133121889 cites W2196898084 @default.
- W3133121889 cites W2548589138 @default.
- W3133121889 cites W2598431361 @default.
- W3133121889 cites W2895945500 @default.
- W3133121889 cites W2898757811 @default.
- W3133121889 cites W2902472343 @default.
- W3133121889 cites W2903413206 @default.
- W3133121889 cites W2963190160 @default.
- W3133121889 cites W2974576337 @default.
- W3133121889 cites W2999653270 @default.
- W3133121889 cites W3023457756 @default.
- W3133121889 cites W3029483780 @default.
- W3133121889 cites W3040441798 @default.
- W3133121889 cites W3047807902 @default.
- W3133121889 cites W3084412168 @default.
- W3133121889 cites W3102072134 @default.
- W3133121889 doi "https://doi.org/10.1002/mp.14781" @default.
- W3133121889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33594673" @default.
- W3133121889 hasPublicationYear "2021" @default.
- W3133121889 type Work @default.
- W3133121889 sameAs 3133121889 @default.
- W3133121889 citedByCount "11" @default.
- W3133121889 countsByYear W31331218892022 @default.
- W3133121889 countsByYear W31331218892023 @default.
- W3133121889 crossrefType "journal-article" @default.
- W3133121889 hasAuthorship W3133121889A5003852242 @default.
- W3133121889 hasAuthorship W3133121889A5005651514 @default.
- W3133121889 hasAuthorship W3133121889A5026676545 @default.
- W3133121889 hasAuthorship W3133121889A5037254879 @default.
- W3133121889 hasAuthorship W3133121889A5055303244 @default.
- W3133121889 hasAuthorship W3133121889A5079854850 @default.
- W3133121889 hasConcept C105702510 @default.
- W3133121889 hasConcept C105795698 @default.
- W3133121889 hasConcept C11413529 @default.
- W3133121889 hasConcept C120665830 @default.
- W3133121889 hasConcept C121332964 @default.
- W3133121889 hasConcept C146904657 @default.
- W3133121889 hasConcept C168834538 @default.
- W3133121889 hasConcept C19499675 @default.
- W3133121889 hasConcept C2779244869 @default.
- W3133121889 hasConcept C2989005 @default.
- W3133121889 hasConcept C33923547 @default.
- W3133121889 hasConcept C41008148 @default.
- W3133121889 hasConcept C71924100 @default.
- W3133121889 hasConcept C94915269 @default.
- W3133121889 hasConcept C97834683 @default.
- W3133121889 hasConceptScore W3133121889C105702510 @default.
- W3133121889 hasConceptScore W3133121889C105795698 @default.
- W3133121889 hasConceptScore W3133121889C11413529 @default.
- W3133121889 hasConceptScore W3133121889C120665830 @default.
- W3133121889 hasConceptScore W3133121889C121332964 @default.
- W3133121889 hasConceptScore W3133121889C146904657 @default.
- W3133121889 hasConceptScore W3133121889C168834538 @default.
- W3133121889 hasConceptScore W3133121889C19499675 @default.
- W3133121889 hasConceptScore W3133121889C2779244869 @default.
- W3133121889 hasConceptScore W3133121889C2989005 @default.
- W3133121889 hasConceptScore W3133121889C33923547 @default.
- W3133121889 hasConceptScore W3133121889C41008148 @default.
- W3133121889 hasConceptScore W3133121889C71924100 @default.
- W3133121889 hasConceptScore W3133121889C94915269 @default.
- W3133121889 hasConceptScore W3133121889C97834683 @default.
- W3133121889 hasFunder F4320335767 @default.
- W3133121889 hasIssue "5" @default.
- W3133121889 hasLocation W31331218891 @default.
- W3133121889 hasOpenAccess W3133121889 @default.
- W3133121889 hasPrimaryLocation W31331218891 @default.
- W3133121889 hasRelatedWork W1980511077 @default.
- W3133121889 hasRelatedWork W2006625173 @default.
- W3133121889 hasRelatedWork W2009559419 @default.
- W3133121889 hasRelatedWork W2022780063 @default.
- W3133121889 hasRelatedWork W2027426300 @default.
- W3133121889 hasRelatedWork W2089894869 @default.
- W3133121889 hasRelatedWork W2098736080 @default.