Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133148964> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3133148964 endingPage "012017" @default.
- W3133148964 startingPage "012017" @default.
- W3133148964 abstract "Abstract Convolution neural network (CNN) has been widely studied in the field of computer vision with good results, and a lot of research is still needed to show its application effect in the near-infrared spectroscopy with 1-D input data and small sample set. In this paper, the near-infrared diffuse transmission spectra of 2386 silkworm (Bombyx mori) cocoons from the 4th day of cocooning to the 13th day before turning into moths were collected. After the mean center preprocessing, CNN, SVM and LDA were used to model and analyze. Experimental results showed that, with the convolution kernel width 100, the convolution kernel num 16, and the stride 50, the good generalization effect of CNN model can be achieved when the simple structure of 6 layers without pooling layer was adopted. For each day, the gender prediction accuracy of cocoons is more than 90% and the highest accuracy is 100% on the 6th day with optimal model CNN. For each day, the variety prediction accuracy of cocoons is more than 98% and the highest accuracy is 100% with optimal model LDA. There is no significant correlation between pupa age and the gender and variety detection accuracy of silkworm cocoons. This can help broaden the pupa gender identification time in the actual production of silkworm egg farms. In the application of simultaneous identification of gender and variety, CNN model has the highest accuracy of 94%, LDA model has the medium accuracy of 92.5%, and SVM model has the lowest accuracy of 89.5%." @default.
- W3133148964 created "2021-03-01" @default.
- W3133148964 creator A5007870731 @default.
- W3133148964 creator A5025535593 @default.
- W3133148964 creator A5063818470 @default.
- W3133148964 creator A5075841198 @default.
- W3133148964 creator A5082202860 @default.
- W3133148964 date "2021-01-01" @default.
- W3133148964 modified "2023-10-11" @default.
- W3133148964 title "Convolution Neural Network Application in the Simultaneous Detection of Gender and Variety of Silkworm (Bombyx mori) Cocoons" @default.
- W3133148964 cites W1857884451 @default.
- W3133148964 cites W2031489346 @default.
- W3133148964 cites W2144041313 @default.
- W3133148964 cites W2897933472 @default.
- W3133148964 cites W2903091095 @default.
- W3133148964 cites W2951230751 @default.
- W3133148964 doi "https://doi.org/10.1088/1742-6596/1769/1/012017" @default.
- W3133148964 hasPublicationYear "2021" @default.
- W3133148964 type Work @default.
- W3133148964 sameAs 3133148964 @default.
- W3133148964 citedByCount "3" @default.
- W3133148964 countsByYear W31331489642022 @default.
- W3133148964 countsByYear W31331489642023 @default.
- W3133148964 crossrefType "journal-article" @default.
- W3133148964 hasAuthorship W3133148964A5007870731 @default.
- W3133148964 hasAuthorship W3133148964A5025535593 @default.
- W3133148964 hasAuthorship W3133148964A5063818470 @default.
- W3133148964 hasAuthorship W3133148964A5075841198 @default.
- W3133148964 hasAuthorship W3133148964A5082202860 @default.
- W3133148964 hasBestOaLocation W31331489641 @default.
- W3133148964 hasConcept C104317684 @default.
- W3133148964 hasConcept C153180895 @default.
- W3133148964 hasConcept C154945302 @default.
- W3133148964 hasConcept C202444582 @default.
- W3133148964 hasConcept C2778487026 @default.
- W3133148964 hasConcept C33923547 @default.
- W3133148964 hasConcept C34736171 @default.
- W3133148964 hasConcept C41008148 @default.
- W3133148964 hasConcept C45347329 @default.
- W3133148964 hasConcept C50644808 @default.
- W3133148964 hasConcept C55493867 @default.
- W3133148964 hasConcept C74193536 @default.
- W3133148964 hasConcept C81363708 @default.
- W3133148964 hasConcept C86803240 @default.
- W3133148964 hasConceptScore W3133148964C104317684 @default.
- W3133148964 hasConceptScore W3133148964C153180895 @default.
- W3133148964 hasConceptScore W3133148964C154945302 @default.
- W3133148964 hasConceptScore W3133148964C202444582 @default.
- W3133148964 hasConceptScore W3133148964C2778487026 @default.
- W3133148964 hasConceptScore W3133148964C33923547 @default.
- W3133148964 hasConceptScore W3133148964C34736171 @default.
- W3133148964 hasConceptScore W3133148964C41008148 @default.
- W3133148964 hasConceptScore W3133148964C45347329 @default.
- W3133148964 hasConceptScore W3133148964C50644808 @default.
- W3133148964 hasConceptScore W3133148964C55493867 @default.
- W3133148964 hasConceptScore W3133148964C74193536 @default.
- W3133148964 hasConceptScore W3133148964C81363708 @default.
- W3133148964 hasConceptScore W3133148964C86803240 @default.
- W3133148964 hasIssue "1" @default.
- W3133148964 hasLocation W31331489641 @default.
- W3133148964 hasOpenAccess W3133148964 @default.
- W3133148964 hasPrimaryLocation W31331489641 @default.
- W3133148964 hasRelatedWork W2175746458 @default.
- W3133148964 hasRelatedWork W2613736958 @default.
- W3133148964 hasRelatedWork W2949189996 @default.
- W3133148964 hasRelatedWork W2977314777 @default.
- W3133148964 hasRelatedWork W3006085271 @default.
- W3133148964 hasRelatedWork W3081496756 @default.
- W3133148964 hasRelatedWork W3093612317 @default.
- W3133148964 hasRelatedWork W3159557112 @default.
- W3133148964 hasRelatedWork W3200060857 @default.
- W3133148964 hasRelatedWork W4312417841 @default.
- W3133148964 hasVolume "1769" @default.
- W3133148964 isParatext "false" @default.
- W3133148964 isRetracted "false" @default.
- W3133148964 magId "3133148964" @default.
- W3133148964 workType "article" @default.