Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133150995> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3133150995 endingPage "3659" @default.
- W3133150995 startingPage "3633" @default.
- W3133150995 abstract "Mobile light detection and ranging (LiDAR) has been widely applied to support a variety of tasks because it captures detailed three-dimensional data of a scene with high accuracy with reduced costs and time compared with many other techniques. Given the large volume of data within a mobile LiDAR point cloud, automation of processing and analysis is critical to improve the efficiency of the entire workflow, particularly for common tasks of ground filtering (separating points representing the ground from non-ground objects) and road detection (identifying and extracting the road surface). This paper proposes a novel and highly efficient method of segment-based ground filtering and adaptive road detection from mobile LiDAR data. The proposed method includes four principal steps: (1) preprocessing of the mobile LiDAR point cloud with data merging and splitting, (2) an improved Mo-norvana trajectory reconstruction and segmentation, (3) segment-based ground filtering via a segment analysis followed by a scanline analysis, and (4) road detection including an adaptive rasterization and vehicle access analysis. The proposed method is demonstrated to be robust, effective, and efficient by testing on representative datasets collected with different speeds in a rural/highway and an urban/suburban scene. The performance of our method is further evaluated quantitatively through a model-based accuracy assessment by comparison to a model generated from manually extracted ground points where the F1 score and Root Mean Square Error of the elevation model are 98.14% and 0.0027 m, and 99.16% and 0.0004 m for the rural and suburban datasets, respectively." @default.
- W3133150995 created "2021-03-01" @default.
- W3133150995 creator A5043119348 @default.
- W3133150995 creator A5046543044 @default.
- W3133150995 date "2021-02-14" @default.
- W3133150995 modified "2023-09-24" @default.
- W3133150995 title "Efficient segment-based ground filtering and adaptive road detection from mobile light detection and ranging (LiDAR) data" @default.
- W3133150995 cites W1973585562 @default.
- W3133150995 cites W1993022899 @default.
- W3133150995 cites W1998834014 @default.
- W3133150995 cites W2000035714 @default.
- W3133150995 cites W2008446209 @default.
- W3133150995 cites W2041330605 @default.
- W3133150995 cites W2077506631 @default.
- W3133150995 cites W2088648144 @default.
- W3133150995 cites W2135148444 @default.
- W3133150995 cites W2159440133 @default.
- W3133150995 cites W2185206735 @default.
- W3133150995 cites W2439667875 @default.
- W3133150995 cites W2612334357 @default.
- W3133150995 cites W2616343321 @default.
- W3133150995 cites W2616896738 @default.
- W3133150995 cites W2771339660 @default.
- W3133150995 cites W2790597870 @default.
- W3133150995 cites W2893333163 @default.
- W3133150995 cites W2901316471 @default.
- W3133150995 cites W2913972737 @default.
- W3133150995 cites W2936544130 @default.
- W3133150995 doi "https://doi.org/10.1080/01431161.2020.1871095" @default.
- W3133150995 hasPublicationYear "2021" @default.
- W3133150995 type Work @default.
- W3133150995 sameAs 3133150995 @default.
- W3133150995 citedByCount "9" @default.
- W3133150995 countsByYear W31331509952021 @default.
- W3133150995 countsByYear W31331509952022 @default.
- W3133150995 countsByYear W31331509952023 @default.
- W3133150995 crossrefType "journal-article" @default.
- W3133150995 hasAuthorship W3133150995A5043119348 @default.
- W3133150995 hasAuthorship W3133150995A5046543044 @default.
- W3133150995 hasConcept C115051666 @default.
- W3133150995 hasConcept C131979681 @default.
- W3133150995 hasConcept C154945302 @default.
- W3133150995 hasConcept C205649164 @default.
- W3133150995 hasConcept C2776821279 @default.
- W3133150995 hasConcept C31972630 @default.
- W3133150995 hasConcept C34736171 @default.
- W3133150995 hasConcept C41008148 @default.
- W3133150995 hasConcept C51399673 @default.
- W3133150995 hasConcept C62649853 @default.
- W3133150995 hasConcept C76155785 @default.
- W3133150995 hasConcept C89600930 @default.
- W3133150995 hasConceptScore W3133150995C115051666 @default.
- W3133150995 hasConceptScore W3133150995C131979681 @default.
- W3133150995 hasConceptScore W3133150995C154945302 @default.
- W3133150995 hasConceptScore W3133150995C205649164 @default.
- W3133150995 hasConceptScore W3133150995C2776821279 @default.
- W3133150995 hasConceptScore W3133150995C31972630 @default.
- W3133150995 hasConceptScore W3133150995C34736171 @default.
- W3133150995 hasConceptScore W3133150995C41008148 @default.
- W3133150995 hasConceptScore W3133150995C51399673 @default.
- W3133150995 hasConceptScore W3133150995C62649853 @default.
- W3133150995 hasConceptScore W3133150995C76155785 @default.
- W3133150995 hasConceptScore W3133150995C89600930 @default.
- W3133150995 hasFunder F4320315300 @default.
- W3133150995 hasFunder F4320337391 @default.
- W3133150995 hasIssue "10" @default.
- W3133150995 hasLocation W31331509951 @default.
- W3133150995 hasOpenAccess W3133150995 @default.
- W3133150995 hasPrimaryLocation W31331509951 @default.
- W3133150995 hasRelatedWork W2030080266 @default.
- W3133150995 hasRelatedWork W2036075313 @default.
- W3133150995 hasRelatedWork W2272572439 @default.
- W3133150995 hasRelatedWork W2391506322 @default.
- W3133150995 hasRelatedWork W2543661874 @default.
- W3133150995 hasRelatedWork W2746940507 @default.
- W3133150995 hasRelatedWork W3080305507 @default.
- W3133150995 hasRelatedWork W4214729122 @default.
- W3133150995 hasRelatedWork W4327778814 @default.
- W3133150995 hasRelatedWork W2189250119 @default.
- W3133150995 hasVolume "42" @default.
- W3133150995 isParatext "false" @default.
- W3133150995 isRetracted "false" @default.
- W3133150995 magId "3133150995" @default.
- W3133150995 workType "article" @default.