Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133177519> ?p ?o ?g. }
- W3133177519 endingPage "4052" @default.
- W3133177519 startingPage "4044" @default.
- W3133177519 abstract "Understanding and controlling the interfacial tension (IFT) of nanoconfined fluids has tremendous implications in scientific research and engineering applications. On the basis of the physical meaning of the equimolar dividing surface and the density distribution characteristic at the interface, we propose a simple model for the density profile at the vapor–liquid interface. The equimolar dividing surface and the surface of tension are assumed to coincide with each other in this work since the inhomogeneity of the interface is characterized by the proposed density profile model. Then, on the basis of the density distribution model, the density function theory (DFT) and the extended Peng–Robinson equation of state (PR EOS, which considers the effects of critical properties shift and capillary pressure) are used to estimate the confined interfacial properties and phase behavior in nanopores. Besides, the influences of temperature, pore radius, and wettability on IFT and capillarity are addressed. The developed model is validated as reliable for IFT calculation through comparison with the experimental data in the literature. Results show the following: (i) The IFT decreases with the reduction of pore size and the increase of temperature, and the decreasing rate is larger in smaller pores and higher temperatures. (ii) Capillary pressure increases with the decreasing pore size and the decreasing temperature, and it is more sensitive to pore size compared with the IFT. (iii) In the liquid phase-wet condition, as the contact angle decreases, the IFT decreases, while the capillary force increases, and the change rate is more obvious in smaller pores. Compared with other methods, the model for nanoconfined IFT proposed in this work, which is derived from the underlying physics mechanism, has a simper formulation with the similar reliability. Particularly, this work sheds light on the variation of IFT of hydrocarbons confined in nanopores of shale gas reservoirs, which provides an insight into the means of enhanced gas recovery in petroleum engineering." @default.
- W3133177519 created "2021-03-01" @default.
- W3133177519 creator A5000134343 @default.
- W3133177519 creator A5005149687 @default.
- W3133177519 creator A5012677271 @default.
- W3133177519 creator A5028155861 @default.
- W3133177519 creator A5051815938 @default.
- W3133177519 creator A5057988006 @default.
- W3133177519 creator A5086480330 @default.
- W3133177519 date "2021-02-14" @default.
- W3133177519 modified "2023-09-27" @default.
- W3133177519 title "Model for Interfacial Tension of Nanoconfined Lennard-Jones Fluid" @default.
- W3133177519 cites W1622590769 @default.
- W3133177519 cites W1769292758 @default.
- W3133177519 cites W1970033288 @default.
- W3133177519 cites W1974626596 @default.
- W3133177519 cites W1982974608 @default.
- W3133177519 cites W1989128861 @default.
- W3133177519 cites W1992885447 @default.
- W3133177519 cites W1995497985 @default.
- W3133177519 cites W2002824783 @default.
- W3133177519 cites W2004526669 @default.
- W3133177519 cites W2004758392 @default.
- W3133177519 cites W2007063263 @default.
- W3133177519 cites W2008006258 @default.
- W3133177519 cites W2010894198 @default.
- W3133177519 cites W2016266640 @default.
- W3133177519 cites W2018982601 @default.
- W3133177519 cites W2022355214 @default.
- W3133177519 cites W2045942876 @default.
- W3133177519 cites W2052602456 @default.
- W3133177519 cites W2054597656 @default.
- W3133177519 cites W2057526358 @default.
- W3133177519 cites W2060472212 @default.
- W3133177519 cites W2062255538 @default.
- W3133177519 cites W2063524905 @default.
- W3133177519 cites W2064009722 @default.
- W3133177519 cites W2067875514 @default.
- W3133177519 cites W2069297302 @default.
- W3133177519 cites W2080443493 @default.
- W3133177519 cites W2088558421 @default.
- W3133177519 cites W2090803631 @default.
- W3133177519 cites W2130011159 @default.
- W3133177519 cites W2136264035 @default.
- W3133177519 cites W2153921710 @default.
- W3133177519 cites W2170267434 @default.
- W3133177519 cites W2237548672 @default.
- W3133177519 cites W2271333048 @default.
- W3133177519 cites W2335041431 @default.
- W3133177519 cites W2385840111 @default.
- W3133177519 cites W2530519841 @default.
- W3133177519 cites W2594983482 @default.
- W3133177519 cites W2596686863 @default.
- W3133177519 cites W2736898129 @default.
- W3133177519 cites W2760942330 @default.
- W3133177519 cites W2768648937 @default.
- W3133177519 cites W2793342245 @default.
- W3133177519 cites W2793763663 @default.
- W3133177519 cites W2803634970 @default.
- W3133177519 cites W2808198494 @default.
- W3133177519 cites W2891137924 @default.
- W3133177519 cites W2897886532 @default.
- W3133177519 cites W2922002769 @default.
- W3133177519 cites W2950078511 @default.
- W3133177519 cites W2970659433 @default.
- W3133177519 cites W3041301857 @default.
- W3133177519 cites W3082367912 @default.
- W3133177519 cites W3105231392 @default.
- W3133177519 cites W1981537212 @default.
- W3133177519 doi "https://doi.org/10.1021/acs.energyfuels.0c04285" @default.
- W3133177519 hasPublicationYear "2021" @default.
- W3133177519 type Work @default.
- W3133177519 sameAs 3133177519 @default.
- W3133177519 citedByCount "3" @default.
- W3133177519 countsByYear W31331775192021 @default.
- W3133177519 countsByYear W31331775192022 @default.
- W3133177519 crossrefType "journal-article" @default.
- W3133177519 hasAuthorship W3133177519A5000134343 @default.
- W3133177519 hasAuthorship W3133177519A5005149687 @default.
- W3133177519 hasAuthorship W3133177519A5012677271 @default.
- W3133177519 hasAuthorship W3133177519A5028155861 @default.
- W3133177519 hasAuthorship W3133177519A5051815938 @default.
- W3133177519 hasAuthorship W3133177519A5057988006 @default.
- W3133177519 hasAuthorship W3133177519A5086480330 @default.
- W3133177519 hasConcept C105569014 @default.
- W3133177519 hasConcept C121332964 @default.
- W3133177519 hasConcept C134514944 @default.
- W3133177519 hasConcept C178635117 @default.
- W3133177519 hasConcept C178790620 @default.
- W3133177519 hasConcept C185592680 @default.
- W3133177519 hasConcept C18762648 @default.
- W3133177519 hasConcept C19184958 @default.
- W3133177519 hasConcept C192562407 @default.
- W3133177519 hasConcept C196806460 @default.
- W3133177519 hasConcept C204402833 @default.
- W3133177519 hasConcept C38652104 @default.
- W3133177519 hasConcept C41008148 @default.
- W3133177519 hasConcept C44280652 @default.