Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133201734> ?p ?o ?g. }
- W3133201734 endingPage "100472" @default.
- W3133201734 startingPage "100472" @default.
- W3133201734 abstract "Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity. Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity. Heterotrimeric αβγ guanine nucleotide-binding proteins (G proteins) are the main transducers of G protein–coupled receptors (GPCRs), the largest family of membrane proteins in mammalian cells (1Gilman A.G. G proteins: Transducers of receptor-generated signals.Annu. Rev. Biochem. 1987; 56: 615-649Crossref PubMed Google Scholar, 2Bockaert J. Pin J.-P. Utiliser un recepteur couplé aux protéines G pour communiquer. Un succès évolutif.C. R. Acad. Sci. III. 1998; 321: 529-551Crossref PubMed Scopus (0) Google Scholar, 3Offermanns S. G-proteins as transducers in transmembrane signalling.Prog. Biophys. Mol. Biol. 2003; 83: 101-130Crossref PubMed Scopus (202) Google Scholar, 4Milligan G. Kostenis E. Heterotrimeric G-proteins: A short history.Br. J. Pharmacol. 2006; 147 Suppl 1: S46-S55Crossref PubMed Scopus (241) Google Scholar, 5Oldham W.M. Hamm H.E. Heterotrimeric G protein activation by G-protein-coupled receptors.Nat. Rev. Mol. Cell Biol. 2008; 9: 60-71Crossref PubMed Scopus (716) Google Scholar, 6Johnston C.A. Siderovski D.P. Receptor-mediated activation of heterotrimeric G-proteins: Current structural insights.Mol. Pharmacol. 2007; 72: 219-230Crossref PubMed Scopus (104) Google Scholar). G proteins mainly relay chemical and physical information from GPCRs to the cell interior to regulate numerous intracellular responses. In this manner, the GPCR–G protein–signaling cascade contributes to an amazing repertoire of physiological and pathophysiological events that are relevant for the regulation of blood pressure, cell proliferation, and metabolism, among many other vital functions (7Wettschureck N. Offermanns S. Mammalian G proteins and their cell type specific functions.Physiol. Rev. 2005; 85: 1159-1204Crossref PubMed Scopus (732) Google Scholar, 8Wettschureck N. Moers A. Offermanns S. Mouse models to study G-protein-mediated signaling.Pharmacol. Ther. 2004; 101: 75-89Crossref PubMed Scopus (0) Google Scholar, 9Neves S.R. Ram P.T. Iyengar R. G protein pathways.Science. 2002; 296: 1636-1639Crossref PubMed Scopus (898) Google Scholar, 10Wu V. Yeerna H. Nohata N. Chiou J. Harismendy O. Raimondi F. Inoue A. Russell R.B. Tamayo P. Gutkind J.S. Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy.J. Biol. Chem. 2019; 294: 11062-11086Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar). At the molecular level, ligand-activated GPCRs act as guanine nucleotide exchange factors (GEFs) to stimulate GDP/GTP exchange on the G protein α subunit. This is followed by heterotrimer dissociation into Gα and Gβγ subunit complexes, which subsequently interact with their downstream effectors (5Oldham W.M. Hamm H.E. Heterotrimeric G protein activation by G-protein-coupled receptors.Nat. Rev. Mol. Cell Biol. 2008; 9: 60-71Crossref PubMed Scopus (716) Google Scholar, 6Johnston C.A. Siderovski D.P. Receptor-mediated activation of heterotrimeric G-proteins: Current structural insights.Mol. Pharmacol. 2007; 72: 219-230Crossref PubMed Scopus (104) Google Scholar, 10Wu V. Yeerna H. Nohata N. Chiou J. Harismendy O. Raimondi F. Inoue A. Russell R.B. Tamayo P. Gutkind J.S. Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy.J. Biol. Chem. 2019; 294: 11062-11086Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar, 11Preininger A.M. Meiler J. Hamm H.E. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: A perspective.J. Mol. Biol. 2013; 425: 2288-2298Crossref PubMed Scopus (69) Google Scholar, 12Dohlman H.G. Thorner J. RGS proteins and signaling by heterotrimeric G proteins.J. Biol. Chem. 1997; 272: 3871-3874Abstract Full Text Full Text PDF PubMed Scopus (441) Google Scholar, 13Dohlman H.G. Jones J.C. Signal activation and inactivation by the Gα helical domain: A long-neglected partner in G protein signaling.Sci. Signal. 2012; 5re2Crossref PubMed Scopus (15) Google Scholar). Despite their central role in GPCR-mediated signal transduction, only a handful of pharmacological agents are available for specific disruption of G protein signaling (14Campbell A.P. Smrcka A.V. Targeting G protein-coupled receptor signalling by blocking G proteins.Nat. Rev. Drug Discov. 2018; 17: 789-803Crossref PubMed Scopus (48) Google Scholar, 15Smrcka A.V. Molecular targeting of Gα and Gβγ subunits: A potential approach for cancer therapeutics.Trends Pharmacol. Sci. 2013; 34: 290-298Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar, 16Schmitz A.-L. Schrage R. Gaffal E. Charpentier T.H. Wiest J. Hiltensperger G. Morschel J. Hennen S. Häußler D. Horn V. Wenzel D. Grundmann M. Büllesbach K.M. Schröder R. Brewitz H.H. et al.A cell-permeable inhibitor to trap Gαq proteins in the empty pocket conformation.Chem. Biol. 2014; 21: 890-902Abstract Full Text Full Text PDF PubMed Google Scholar, 17Ayoub M.A. Damian M. Gespach C. Ferrandis E. Lavergne O. Wever O. de Banères J.-L. Pin J.-P. Prévost G.P. Inhibition of heterotrimeric G protein signaling by a small molecule acting on Galpha subunit.J. Biol. Chem. 2009; 284: 29136-29145Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 18Ayoub M.A. Small molecules targeting heterotrimeric G proteins.Eur. J. Pharmacol. 2018; 826: 169-178Crossref PubMed Scopus (10) Google Scholar). Of the four major G protein families (Gi/o, Gs, Gq/11, and G12/13), Gi/o proteins are effectively hindered from signal transmission by pertussis toxin (PTX) (19Katada T. Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein.Proc. Natl. Acad. Sci. U. S. A. 1982; 79: 3129-3133Crossref PubMed Google Scholar), whereas cholera toxin only masks Gs signaling by persistent activation of the Gs-adenylyl cyclase (AC) cascade (20Cassel D. Pfeuffer T. Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system.Proc. Natl. Acad. Sci. U. S. A. 1978; 75: 2669-2673Crossref PubMed Google Scholar). Unlike these two bacterial toxins, which act via covalent modification of their cognate Gαi and Gαs subunits, respectively (21Yamane H.K. Fung B.K. Covalent modifications of G-proteins.Annu. Rev. Pharmacol. Toxicol. 1993; 33: 201-241Crossref PubMed Scopus (0) Google Scholar), Gq inhibitors FR900359 (FR) and YM-254890 (YM), two naturally occurring cyclic peptides (22Taniguchi M. Nagai K. Arao N. Kawasaki T. Saito T. Moritani Y. Takasaki J. Hayashi K. Fujita S. Suzuki K. Tsukamoto S. YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666.J. Antibiot. 2003; 56: 358-363Crossref PubMed Scopus (62) Google Scholar, 23Fujioka M. Koda S. Morimoto Y. Biemann K. Structure of FR900359, a cyclic depsipeptide from Ardisia crenata sims.J. Org. Chem. 1988; 53: 2820-2825Crossref Scopus (54) Google Scholar), belong to a distinct yet particularly attractive subgroup of noncovalent cell-permeable signaling inhibitors. Mechanistically, both depsipeptides silence function of the Gq family members Gq, G11, and G14 via inhibition of GDP release, the rate-limiting step in G protein activation (24Schrage R. Schmitz A.-L. Gaffal E. Annala S. Kehraus S. Wenzel D. Büllesbach K.M. Bald T. Inoue A. Shinjo Y. Galandrin S. Shridhar N. Hesse M. Grundmann M. Merten N. et al.The experimental power of FR900359 to study Gq-regulated biological processes.Nat. Commun. 2015; 6: 10156Crossref PubMed Google Scholar, 25Nishimura A. Kitano K. Takasaki J. Taniguchi M. Mizuno N. Tago K. Hakoshima T. Itoh H. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule.Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 13666-13671Crossref PubMed Scopus (141) Google Scholar). Thereby, FR and YM lock their cognate Gαβγ heterotrimers in the inactive GDP-bound form. Thus far, both depsipeptides are considered potent and highly selective for Gq over all other Gα families (24Schrage R. Schmitz A.-L. Gaffal E. Annala S. Kehraus S. Wenzel D. Büllesbach K.M. Bald T. Inoue A. Shinjo Y. Galandrin S. Shridhar N. Hesse M. Grundmann M. Merten N. et al.The experimental power of FR900359 to study Gq-regulated biological processes.Nat. Commun. 2015; 6: 10156Crossref PubMed Google Scholar, 25Nishimura A. Kitano K. Takasaki J. Taniguchi M. Mizuno N. Tago K. Hakoshima T. Itoh H. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule.Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 13666-13671Crossref PubMed Scopus (141) Google Scholar, 26Kuschak M. Namasivayam V. Rafehi M. Voss J.H. Garg J. Schlegel J.G. Abdelrahman A. Kehraus S. Reher R. Küppers J. Sylvester K. Hinz S. Matthey M. Wenzel D. Fleischmann B.K. et al.Cell-permeable high-affinity tracers for Gq proteins provide structural insights, reveal distinct binding kinetics and identify small molecule inhibitors.Br. J. Pharmacol. 2020; 177: 1898-1916Crossref PubMed Scopus (0) Google Scholar, 27Takasaki J. Saito T. Taniguchi M. Kawasaki T. Moritani Y. Hayashi K. Kobori M. A novel Galphaq/11-selective inhibitor.J. Biol. Chem. 2004; 279: 47438-47445Abstract Full Text Full Text PDF PubMed Scopus (268) Google Scholar, 28Inamdar V. Patel A. Manne B.K. Dangelmaier C. Kunapuli S.P. Characterization of UBO-QIC as a Gαq inhibitor in platelets.Platelets. 2015; 26: 771-778Crossref PubMed Scopus (23) Google Scholar), explaining their widespread use to explore the biological consequences arising from specific Gq inhibition in vitro, ex vivo, and in vivo (14Campbell A.P. Smrcka A.V. Targeting G protein-coupled receptor signalling by blocking G proteins.Nat. Rev. Drug Discov. 2018; 17: 789-803Crossref PubMed Scopus (48) Google Scholar, 22Taniguchi M. Nagai K. Arao N. Kawasaki T. Saito T. Moritani Y. Takasaki J. Hayashi K. Fujita S. Suzuki K. Tsukamoto S. YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666.J. Antibiot. 2003; 56: 358-363Crossref PubMed Scopus (62) Google Scholar, 29Wauson E.M. Guerra M.L. Dyachok J. McGlynn K. Giles J. Ross E.M. Cobb M.H. Differential regulation of ERK1/2 and mTORC1 through T1R1/T1R3 in MIN6 cells.Mol. Endocrinol. 2015; 29: 1114-1122Crossref PubMed Scopus (13) Google Scholar, 30Kim S.H. MacIntyre D.A. Hanyaloglu A.C. Blanks A.M. Thornton S. Bennett P.R. Terzidou V. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(αi) signalling.Mol. Cell. Endocrinol. 2016; 420: 11-23Crossref PubMed Scopus (0) Google Scholar, 31Liao Y. Lu B. Ma Q. Wu G. Lai X. Zang J. Shi Y. Liu D. Han F. Zhou N. Human neuropeptide S receptor is activated via a Gαq protein-biased signaling cascade by a human neuropeptide S analog lacking the C-terminal 10 residues.J. Biol. Chem. 2016; 291: 7505-7516Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar, 32Crüsemann M. Reher R. Schamari I. Brachmann A.O. Ohbayashi T. Kuschak M. Malfacini D. Seidinger A. Pinto-Carbó M. Richarz R. Reuter T. Kehraus S. Hallab A. Attwood M. Schiöth H.B. et al.Heterologous expression, biosynthetic studies, and ecological function of the selective Gq-signaling inhibitor FR900359.Angew. Chem. Int. Ed. Engl. 2018; 57: 836-840Crossref PubMed Scopus (22) Google Scholar, 33Kienitz M.-C. Niemeyer A. König G.M. Kostenis E. Pott L. Rinne A. Biased signaling of Ca2+-sensing receptors in cardiac myocytes regulates GIRK channel activity.J. Mol. Cell. Cardiol. 2019; 130: 107-121Abstract Full Text Full Text PDF PubMed Google Scholar, 34Ebner J.K. König G.M. Kostenis E. Siegert P. Aktories K. Orth J.H.C. Activation of Gq signaling by Pasteurella multocida toxin inhibits the osteoblastogenic-like actions of Activin A in C2C12 myoblasts, a cell model of fibrodysplasia ossificans progressiva.Bone. 2019; 127: 592-601Crossref PubMed Scopus (1) Google Scholar, 35Olianas M.C. Dedoni S. Onali P. Protection from interferon-β-induced neuronal apoptosis through stimulation of muscarinic acetylcholine receptors coupled to ERK1/2 activation.Br. J. Pharmacol. 2016; 173: 2910-2928Crossref PubMed Scopus (9) Google Scholar, 36Roszko K.L. Bi R. Gorvin C.M. Bräuner-Osborne H. Xiong X.-F. Inoue A. Thakker R.V. Strømgaard K. Gardella T. Mannstadt M. Knockin mouse with mutant Gα11 mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors.JCI Insight. 2017; 2e91079Crossref PubMed Google Scholar, 37Lorenzen E. Ceraudo E. Berchiche Y.A. Rico C.A. Fürstenberg A. Sakmar T.P. Huber T. G protein subtype-specific signaling bias in a series of CCR5 chemokine analogs.Sci. Signal. 2018; 11eaao615210Crossref Scopus (10) Google Scholar, 38Coombs C. Georgantzoglou A. Walker H.A. Patt J. Merten N. Poplimont H. Busch-Nentwich E.M. Williams S. Kotsi C. Kostenis E. Sarris M. Chemokine receptor trafficking coordinates neutrophil clustering and dispersal at wounds in zebrafish.Nat. Commun. 2019; 10: 5166Crossref PubMed Scopus (16) Google Scholar, 39Gao Z.-G. Inoue A. Jacobson K.A. On the G protein-coupling selectivity of the native A2B adenosine receptor.Biochem. Pharmacol. 2018; 151: 201-213Crossref PubMed Scopus (12) Google Scholar, 40Onken M.D. Makepeace C.M. Kaltenbronn K.M. Kanai S.M. Todd T.D. Wang S. Broekelmann T.J. Rao P.K. Cooper J.A. Blumer K.J. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells.Sci. Signal. 2018; 11eaao6852Crossref PubMed Scopus (35) Google Scholar, 41Lian X. Beer-Hammer S. König G.M. Kostenis E. Nürnberg B. Gollasch M. RXFP1 receptor activation by relaxin-2 induces vascular relaxation in mice via a Gαi2-protein/PI3Kß/γ/Nitric oxide-coupled pathway.Front. Physiol. 2018; 9: 1234Crossref PubMed Scopus (0) Google Scholar, 42Cervantes-Villagrana R.D. Adame-García S.R. García-Jiménez I. Color-Aparicio V.M. Beltrán-Navarro Y.M. König G.M. Kostenis E. Reyes-Cruz G. Gutkind J.S. Vázquez-Prado J. Gβγ signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Gαq and Gα13 proteins.J. Biol. Chem. 2019; 294: 531-546Abstract Full Text Full Text PDF PubMed Scopus (17) Google Scholar, 43Grundmann M. Merten N. Malfacini D. Inoue A. Preis P. Simon K. Rüttiger N. Ziegler N. Benkel T. Schmitt N.K. Ishida S. Müller I. Reher R. Kawakami K. Inoue A. et al.Lack of beta-arrestin signaling in the absence of active G proteins.Nat. Commun. 2018; 9: 341Crossref PubMed Scopus (159) Google Scholar, 44Bolognini D. Moss C.E. Nilsson K. Petersson A.U. Donnelly I. Sergeev E. König G.M. Kostenis E. Kurowska-Stolarska M. Miller A. Dekker N. Tobin A.B. Milligan G. A novel allosteric activator of free fatty acid 2 receptor displays unique Gi-functional bias.J. Biol. Chem. 2016; 291: 18915-18931Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 45Badolia R. Inamdar V. Manne B.K. Dangelmaier C. Eble J.A. Kunapuli S.P. Gq pathway regulates proximal C-type lectin-like receptor-2 (CLEC-2) signaling in platelets.J. Biol. Chem. 2017; 292: 14516-14531Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar, 46Carr R. Koziol-White C. Zhang J. Lam H. An S.S. Tall G.G. Panettieri R.A. Benovic J.L. Interdicting Gq activation in airway disease by receptor-dependent and receptor-independent mechanisms.Mol. Pharmacol. 2016; 89: 94-104Crossref PubMed Scopus (30) Google Scholar, 47Hennen S. Wang H. Peters L. Merten N. Simon K. Spinrath A. Blättermann S. Akkari R. Schrage R. Schröder R. Schulz D. Vermeiren C. Zimmermann K. Kehraus S. Drewke C. et al.Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist.Sci. Signal. 2013; 6ra93Crossref PubMed Scopus (97) Google Scholar, 48Jacobsen S.E. Nørskov-Lauritsen L. Thomsen A.R.B. Smajilovic S. Wellendorph P. Larsson N.H.P. Lehmann A. Bhatia V.K. Bräuner-Osborne H. Delineation of the GPRC6A receptor signaling pathways using a mammalian cell line stably expressing the receptor.J. Pharmacol. Exp. Ther. 2013; 347: 298-309Crossref PubMed Scopus (50) Google Scholar, 49Karpinsky-Semper D. Volmar C.-H. Brothers S.P. Slepak V.Z. Differential effects of the Gβ5-RGS7 complex on muscarinic M3 receptor-induced Ca2+ influx and release.Mol. Pharmacol. 2014; 85: 758-768Crossref PubMed Scopus (25) Google Scholar, 50Ando K. Obara Y. Sugama J. Kotani A. Koike N. Ohkubo S. Nakahata N. P2Y2 receptor-Gq/11 signaling at lipid rafts is required for UTP-induced cell migration in NG 108-15 cells.J. Pharmacol. Exp. Ther. 2010; 334: 809-819Crossref PubMed Scopus (16) Google Scholar, 51Taboubi S. Milanini J. Delamarre E. Parat F. Garrouste F. Pommier G. Takasaki J. Hubaud J.-C. Kovacic H. Lehmann M. G alpha(q/11)-coupled P2Y2 nucleotide receptor inhibits human keratinocyte spreading and migration.FASEB J. 2007; 21: 4047-4058Crossref PubMed Scopus (0) Google Scholar, 52Matthey M. Roberts R. Seidinger A. Simon A. Schröder R. Kuschak M. Annala S. König G.M. Müller C.E. Hall I.P. Kostenis E. Fleischmann B.K. Wenzel D. Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma.Sci. Transl. Med. 2017; 9eaag2288Crossref PubMed Scopus (30) Google Scholar, 53Annala S. Feng X. Shridhar N. Eryilmaz F. Patt J. Yang J. Pfeil E.M. Cervantes-Villagrana R.D. Inoue A. Häberlein F. Slodczyk T. Reher R. Kehraus S. Monteleone S. Schrage R. et al.Direct targeting of Gαq and Gα11 oncoproteins in cancer cells.Sci. Signal. 2019; 12eaau5948Crossref PubMed Scopus (37) Google Scholar, 54Lapadula D. Farias E. Randolph C.E. Purwin T.J. McGrath D. Charpentier T.H. Zhang L. Wu S. Terai M. Sato T. Tall G.G. Zhou N. Wedegaertner P.B. Aplin A.E. Aguirre-Ghiso J. et al.Effects of oncogenic Gαq and Gα11 inhibition by FR900359 in uveal melanoma.Mol. Cancer Res. 2019; 17: 963-973Crossref PubMed Scopus (36) Google Scholar, 55Meleka M. Medcalf M. Moeller K.D. Osei-Owusu P. Functional mechanisms of novel G protein inhibitor ligands as vasodilators.FASEB J. 2018; 31665.4Google Scholar, 56Uemura T. Takamatsu H. Kawasaki T. Taniguchi M. Yamamoto E. Tomura Y. Uchida W. Miyata K. Effect of YM-254890, a specific Galphaq/11 inhibitor, on experimental peripheral arterial disease in rats.Eur. J. Pharmacol. 2006; 536: 154-161Crossref PubMed Scopus (0) Google Scholar, 57Li Y. Shi J. Yang J. Ge S. Zhang J. Jia R. Fan X. Uveal melanoma: Progress in molecular biology and therapeutics.Ther. Adv. Med. Oncol. 2020; 12 (1758835920965852)Crossref Scopus (0) Google Scholar, 58Croce M. Ferrini S. Pfeffer U. Gangemi R. Targeted therapy of uveal melanoma: Recent failures and new perspectives.Cancers. 2019; 11846Crossref Scopus (18) Google Scholar, 59Gaffal E. Research in practice: Therapeutic targeting of oncogenic GNAQ mutations in uveal melanoma.J. Dtsch. Dermatol. Ges. 2020; 18: 1245-1248Google Scholar, 60Uemura T. Kawasaki T. Taniguchi M. Moritani Y. Hayashi K. Saito T. Takasaki J. Uchida W. Miyata K. Biological properties of a specific Galpha q/11 inhibitor, YM-254890, on platelet functions and thrombus formation under high-shear stress.Br. J. Pharmacol. 2006; 148: 61-69Crossref PubMed Scopus (34) Google Scholar). Despite prior in-depth characterization of FR and YM (22Taniguchi M. Nagai K. Arao N. Kawasaki T. Saito T. Moritani Y. Takasaki J. Hayashi K. Fujita S. Suzuki K. Tsukamoto S. YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666.J. Antibiot. 2003; 56: 358-363Crossref PubMed Scopus (62) Google Scholar, 24Schrage R. Schmitz A.-L. Gaffal E. Annala S. Kehraus S. Wenzel D. Büllesbach K.M. Bald T. Inoue A. Shinjo Y. Galandrin S. Shridhar N. Hesse M. Grundmann M. Merten N. et al.The experimental power of FR900359 to study Gq-regulated biological processes.Nat. Commun. 2015; 6: 10156Crossref PubMed Google Scholar, 25Nishimura A. Kitano K. Takasaki J. Taniguchi M. Mizuno N. Tago K. Hakoshima T. Itoh H. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule.Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 13666-13671Crossref PubMed Scopus (141) Google Scholar, 26Kuschak M. Namasivayam V. Rafehi M. Voss J.H. Garg J. Schlegel J.G. Abdelrahman A. Kehraus S. Reher R. Küppers J. Sylvester K. Hinz S. Matthey M. Wenzel D. Fleischmann B.K. et al.Cell-permeable high-affinity tracers for Gq proteins provide structural insights, reveal distinct binding kinetics and identify small molecule inhibitors.Br. J. Pharmacol. 2020; 177: 1898-1916Crossref PubMed Scopus (0) Google Scholar, 27Takasaki J. Saito T. Taniguchi M. Kawasaki T. Moritani Y. Hayashi K. Kobori M. A novel Galphaq/11-selective inhibitor.J. Biol. Chem. 2004; 279: 47438-47445Abstract Full Text Full Text PDF PubMed Scopus (268) Google Scholar, 28Inamdar V. Patel A. Manne B.K. Dangelmaier C. Kunapuli S.P. Characterization of UBO-QIC as a Gαq inhibitor in platelets.Platelets. 2015; 26: 771-778Crossref PubMed Scopus (23) Google Scholar, 60Uemura T. Kawasaki T. Taniguchi M. Moritani Y. Hayashi K. Saito T. Takasaki J. Uchida W. Miyata K. Biological properties of a specific Galpha q/11 inhibitor, YM-254890, on platelet functions and thrombus formation under high-shear stress.Br. J. Pharmacol. 2006; 148: 61-69Crossref PubMed Scopus (34) Google Scholar, 61Kawasaki T. Taniguchi M. Moritani Y. Hayashi K. Saito T. Takasaki J. Nagai K. Inagaki O. Shikama H. Antithrombotic and thrombolytic efficacy of YM-254890, a G q/11 inhibitor, in a rat model of arterial thrombosis.Thromb. Haemost. 2003; 90: 406-413Crossref PubMed Google Scholar, 62Kawasaki T. Uemura T. Taniguchi M. Takasaki J. Pharmacological properties of a specific Gq/11 inhibitor, YM-254890.Nihon Yakurigaku Zasshi. 2006; 128: 23-31Crossref PubMed Scopus (0) Google Scholar, 63Malfacini D. Patt J. Annala S. Harpsøe K. Eryilmaz F. Reher R. Crüsemann M. Hanke W. Zhang H. Tietze D. Gloriam D.E. Bräuner-Osborne H. Strømgaard K. König G.M. Inoue A. et al.Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity.J. Biol. Chem. 2019; 294: 5747-5758Abstract Full Text Full Text PDF PubMed Scopus (13) Google Scholar), two recent investigations have cast doubt on the selectivity profiles of both inhibitors. Although one study claimed FR to also inhibit Gβγ-mediated Ca2+ signaling downstream of Gi-coupled GPCRs (64Gao Z.-G. Jacobson K.A. On the selectivity of the Gαq inhibitor UBO-QIC: A comparison with the Gαi inhibitor pertussis toxin.Biochem. Pharmacol. 2016; 107: 59-66Crossref PubMed Scopus (29) Google Scholar), a recent report suggested YM to act as a broad-spectrum inhibitor for Gq and Gs proteins, and, additionally, as biased Gi inhibitor (65Peng Q. Alqahtani S. Nasrullah M.Z.A. Shen J. Functional evidence for biased inhibition of G protein signaling by YM-254890 in human coronary artery endothelial cells.Eur. J. Pharmacol. 2020; 891: 173706Crossref PubMed Scopus (0) Google Scholar). Thus, an important emerging research question is, whether FR and YM exert such nonselective effects by directly inhibiting G proteins other than Gq, G11, and G14 or by inhibiting only its canonical targets in signaling networks that cooperate with other G protein classes to control a given effector system. The latter possibility is suggested by a large body of experimental evidence showing that GPCRs interact with multiple G proteins to cooperatively regulate downstream effectors. For example, certain AC isoforms are activated synergistically by Gαs and Ca2+ evoked by Gq/11, whereas others are activated by Gαs and Gβγ released from Gi/o heterotrimers (66Cooper D.M.F. Regulation and organization of adenylyl cyclases and cAMP.Biochem. J. 2003; 375: 517-529Crossref PubMed Scopus (260) Google Scholar, 67Cooper D.M. Mons N. Karpen J.W. Adenylyl cyclases and the interaction between calcium and cAMP signalling.Nature. 1995; 374: 421-424Crossref PubMed Scopus (544) Google Scholar). Moreover, phospholipase C (PLC) β2 and β3 isoforms are synergistically activated by Gαq and Gβγ, the latter originating from Gi/o heterotrimers (68Philip F. Kadamur G. Silos R.G. Woodson J. Ross E.M. Synergistic activation of phospholipase C-beta3 by Galpha(q) and Gbetagamma describes a simple two-state coincidence detector.Curr. Biol. 2010; 20: 1327-1335Abstract Full Text Full Text PDF PubMed Scopus (45) Google Scholar, 69Boyer J.L. Waldo G.L. Harden T.K. Beta gamma-subunit activation of G-protein-regulated phospholipase C.J. Biol. Chem. 1992; 267: 25451-25456Abstract Full Text PDF PubMed Google Scholar, 70Smrcka A.V. Sternweis P.C. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits.J. Biol. Chem. 1993; 268: 9667-9674Abstract Full Text PDF PubMed Google Scholar, 71Lee S.B. Shin S.H. Hepler J.R. Gilman A.G. Rhee S.G. Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits.J. Biol. Chem. 1993; 268: 25952-25957Abstract Full Text PDF PubMed Google Scholar, 72Rebres R.A. Roach T.I.A. Fraser I.D.C. Philip F. Moon C. Lin K.-M. Liu J. Santat L. Cheadle L. Ross E.M. Simon M.I. Seaman W.E. Synergistic Ca2+ responses by G{alpha}i- and G{alpha}q-coupled G-protein-coupled receptors require a single PLC{beta} isoform that is sensitive to both G{beta}{gamma} and G{alpha}q.J. Biol. Chem. 2011; 286: 942-951Abstract Full Text Full Text PDF PubMed Scopus (36) Google Scholar). For the above reasons, clarification of the purported nonselective pharmacology of FR and YM is important for basic science where both inhibitors are used to probe the function of Gq/11 (14Campbell A.P. Smrcka A.V. Targeting G protein-coupled receptor signalling by blocking G proteins.Nat. Rev. Drug Discov. 2018; 17: 789-803Crossref PubMed Scopus (48) Google Scholar, 29Wauson E.M. Guerra M.L. Dyachok J. McGlynn K. Giles J. Ross E.M. Cobb M.H. Differential regulation of ERK1/2 and mTORC1 through T1R1/T1R3 in MIN6 cells.Mol. Endocrinol. 2015; 29: 1114-1122Crossref PubMed Scopus (13) Google Scholar, 30Kim S.H. MacIntyre D.A. Hanyaloglu A.C. Blanks A.M. Thornton S. Bennett P.R. Terzidou V. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(αi) signalling.Mol. Cell. Endocrinol. 2016; 420: 11-23Crossref PubMed Scopus (0) Google Scholar, 31Liao Y. Lu B. Ma Q. Wu G. Lai X. Zang J. Shi Y. Liu D. Han F. Zhou N. Human neuropeptide S receptor is activated via a Gαq protein-biased signaling cascade by a human neuropeptide S analog lacking the C-terminal 10 residues.J. Biol. Chem. 2016; 291: 7505-7516Abstract Full Text Full Text PDF PubMed S" @default.
- W3133201734 created "2021-03-01" @default.
- W3133201734 creator A5002302524 @default.
- W3133201734 creator A5010166957 @default.
- W3133201734 creator A5017260514 @default.
- W3133201734 creator A5023772078 @default.
- W3133201734 creator A5027498283 @default.
- W3133201734 creator A5027819899 @default.
- W3133201734 creator A5029710086 @default.
- W3133201734 creator A5037363992 @default.
- W3133201734 creator A5052118441 @default.
- W3133201734 creator A5054216760 @default.
- W3133201734 creator A5055734219 @default.
- W3133201734 creator A5058056833 @default.
- W3133201734 creator A5063472068 @default.
- W3133201734 creator A5064921157 @default.
- W3133201734 creator A5070469151 @default.
- W3133201734 date "2021-01-01" @default.
- W3133201734 modified "2023-09-30" @default.
- W3133201734 title "An experimental strategy to probe Gq contribution to signal transduction in living cells" @default.
- W3133201734 cites W114985096 @default.
- W3133201734 cites W1497665885 @default.
- W3133201734 cites W1518153787 @default.
- W3133201734 cites W1528703967 @default.
- W3133201734 cites W1545209966 @default.
- W3133201734 cites W1580968401 @default.
- W3133201734 cites W1606957740 @default.
- W3133201734 cites W1954294875 @default.
- W3133201734 cites W1957561 @default.
- W3133201734 cites W1964940783 @default.
- W3133201734 cites W1965506881 @default.
- W3133201734 cites W1968207238 @default.
- W3133201734 cites W1969583788 @default.
- W3133201734 cites W1975998142 @default.
- W3133201734 cites W1980166477 @default.
- W3133201734 cites W1980247498 @default.
- W3133201734 cites W1981493299 @default.
- W3133201734 cites W1984857320 @default.
- W3133201734 cites W1987427597 @default.
- W3133201734 cites W1989222688 @default.
- W3133201734 cites W1990499518 @default.
- W3133201734 cites W1993485378 @default.
- W3133201734 cites W1996405087 @default.
- W3133201734 cites W1997308071 @default.
- W3133201734 cites W1999608305 @default.
- W3133201734 cites W2000082154 @default.
- W3133201734 cites W2001040603 @default.
- W3133201734 cites W2001208062 @default.
- W3133201734 cites W2001379640 @default.
- W3133201734 cites W2004871593 @default.
- W3133201734 cites W2005614924 @default.
- W3133201734 cites W2008635838 @default.
- W3133201734 cites W2012907914 @default.
- W3133201734 cites W2012959255 @default.
- W3133201734 cites W2013428424 @default.
- W3133201734 cites W2014229794 @default.
- W3133201734 cites W2016710361 @default.
- W3133201734 cites W2017316435 @default.
- W3133201734 cites W2024177986 @default.
- W3133201734 cites W2029328131 @default.
- W3133201734 cites W2034742712 @default.
- W3133201734 cites W2034965587 @default.
- W3133201734 cites W2036428801 @default.
- W3133201734 cites W2040213813 @default.
- W3133201734 cites W2044775506 @default.
- W3133201734 cites W2048352168 @default.
- W3133201734 cites W2055802786 @default.
- W3133201734 cites W2064289262 @default.
- W3133201734 cites W2064797517 @default.
- W3133201734 cites W2064856742 @default.
- W3133201734 cites W2065812429 @default.
- W3133201734 cites W2067789085 @default.
- W3133201734 cites W2074665881 @default.
- W3133201734 cites W2080875376 @default.
- W3133201734 cites W2084405792 @default.
- W3133201734 cites W2085275630 @default.
- W3133201734 cites W2086106584 @default.
- W3133201734 cites W2086132509 @default.
- W3133201734 cites W2099398848 @default.
- W3133201734 cites W2099540110 @default.
- W3133201734 cites W2100554784 @default.
- W3133201734 cites W2100772783 @default.
- W3133201734 cites W2102853946 @default.
- W3133201734 cites W2104259759 @default.
- W3133201734 cites W2104529835 @default.
- W3133201734 cites W2107258432 @default.
- W3133201734 cites W2109967142 @default.
- W3133201734 cites W2117913181 @default.
- W3133201734 cites W2119237563 @default.
- W3133201734 cites W2120552228 @default.
- W3133201734 cites W2121819992 @default.
- W3133201734 cites W2127320249 @default.
- W3133201734 cites W2129987233 @default.
- W3133201734 cites W2134292181 @default.
- W3133201734 cites W2134841461 @default.
- W3133201734 cites W2139196151 @default.
- W3133201734 cites W2143455502 @default.
- W3133201734 cites W2144001627 @default.