Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133235685> ?p ?o ?g. }
- W3133235685 endingPage "1512" @default.
- W3133235685 startingPage "1512" @default.
- W3133235685 abstract "A novel and innovative solution addressing wind turbines’ main bearing failure predictions using SCADA data is presented. This methodology enables to cut setup times and has more flexible requirements when compared to the current predictive algorithms. The proposed solution is entirely unsupervised as it does not require the labeling of data through work orders logs. Results of interpretable algorithms, which are tailored to capture specific aspects of main bearing failures, are merged into a combined health status indicator making use of Ensemble Learning principles. Based on multiple specialized indicators, the interpretability of the results is greater compared to black-box solutions that try to address the problem with a single complex algorithm. The proposed methodology has been tested on a dataset covering more than two year of operations from two onshore wind farms, counting a total of 84 turbines. All four main bearing failures are anticipated at least one month of time in advance. Combining individual indicators into a composed one proved effective with regard to all the tracked metrics. Accuracy of 95.1%, precision of 24.5% and F1 score of 38.5% are obtained averaging the values across the two windfarms. The encouraging results, the unsupervised nature and the flexibility and scalability of the proposed solution are appealing, making it particularly attractive for any online monitoring system used on single wind farms as well as entire wind turbine fleets." @default.
- W3133235685 created "2021-03-01" @default.
- W3133235685 creator A5045982852 @default.
- W3133235685 creator A5056296244 @default.
- W3133235685 creator A5066119190 @default.
- W3133235685 creator A5081753887 @default.
- W3133235685 creator A5085145589 @default.
- W3133235685 date "2021-02-22" @default.
- W3133235685 modified "2023-10-16" @default.
- W3133235685 title "An Ensemble Learning Solution for Predictive Maintenance of Wind Turbines Main Bearing" @default.
- W3133235685 cites W1678356000 @default.
- W3133235685 cites W1769140016 @default.
- W3133235685 cites W1952770714 @default.
- W3133235685 cites W2011360361 @default.
- W3133235685 cites W2016910367 @default.
- W3133235685 cites W2020692786 @default.
- W3133235685 cites W2037411704 @default.
- W3133235685 cites W2044883611 @default.
- W3133235685 cites W2047468395 @default.
- W3133235685 cites W2060512336 @default.
- W3133235685 cites W2110000683 @default.
- W3133235685 cites W2144416248 @default.
- W3133235685 cites W2255738116 @default.
- W3133235685 cites W2291842222 @default.
- W3133235685 cites W2319126517 @default.
- W3133235685 cites W2521465978 @default.
- W3133235685 cites W2523553285 @default.
- W3133235685 cites W2612928659 @default.
- W3133235685 cites W2750424462 @default.
- W3133235685 cites W2793162207 @default.
- W3133235685 cites W2793167745 @default.
- W3133235685 cites W2799382144 @default.
- W3133235685 cites W2801050875 @default.
- W3133235685 cites W2802203651 @default.
- W3133235685 cites W2804736344 @default.
- W3133235685 cites W2903494426 @default.
- W3133235685 cites W2925519069 @default.
- W3133235685 cites W2945346803 @default.
- W3133235685 cites W2966392392 @default.
- W3133235685 cites W2967240902 @default.
- W3133235685 cites W2981841850 @default.
- W3133235685 cites W3013107223 @default.
- W3133235685 cites W3036673944 @default.
- W3133235685 cites W3044539520 @default.
- W3133235685 cites W3088889804 @default.
- W3133235685 cites W3092588609 @default.
- W3133235685 cites W3107337238 @default.
- W3133235685 cites W3118944213 @default.
- W3133235685 doi "https://doi.org/10.3390/s21041512" @default.
- W3133235685 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7926535" @default.
- W3133235685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33671601" @default.
- W3133235685 hasPublicationYear "2021" @default.
- W3133235685 type Work @default.
- W3133235685 sameAs 3133235685 @default.
- W3133235685 citedByCount "20" @default.
- W3133235685 countsByYear W31332356852021 @default.
- W3133235685 countsByYear W31332356852022 @default.
- W3133235685 countsByYear W31332356852023 @default.
- W3133235685 crossrefType "journal-article" @default.
- W3133235685 hasAuthorship W3133235685A5045982852 @default.
- W3133235685 hasAuthorship W3133235685A5056296244 @default.
- W3133235685 hasAuthorship W3133235685A5066119190 @default.
- W3133235685 hasAuthorship W3133235685A5081753887 @default.
- W3133235685 hasAuthorship W3133235685A5085145589 @default.
- W3133235685 hasBestOaLocation W31332356851 @default.
- W3133235685 hasConcept C105795698 @default.
- W3133235685 hasConcept C113863187 @default.
- W3133235685 hasConcept C119599485 @default.
- W3133235685 hasConcept C119857082 @default.
- W3133235685 hasConcept C124101348 @default.
- W3133235685 hasConcept C127413603 @default.
- W3133235685 hasConcept C154945302 @default.
- W3133235685 hasConcept C199978012 @default.
- W3133235685 hasConcept C200601418 @default.
- W3133235685 hasConcept C2775846686 @default.
- W3133235685 hasConcept C2778449969 @default.
- W3133235685 hasConcept C2780598303 @default.
- W3133235685 hasConcept C2781067378 @default.
- W3133235685 hasConcept C33923547 @default.
- W3133235685 hasConcept C41008148 @default.
- W3133235685 hasConcept C45942800 @default.
- W3133235685 hasConcept C48044578 @default.
- W3133235685 hasConcept C70452415 @default.
- W3133235685 hasConcept C77088390 @default.
- W3133235685 hasConcept C78519656 @default.
- W3133235685 hasConcept C78600449 @default.
- W3133235685 hasConceptScore W3133235685C105795698 @default.
- W3133235685 hasConceptScore W3133235685C113863187 @default.
- W3133235685 hasConceptScore W3133235685C119599485 @default.
- W3133235685 hasConceptScore W3133235685C119857082 @default.
- W3133235685 hasConceptScore W3133235685C124101348 @default.
- W3133235685 hasConceptScore W3133235685C127413603 @default.
- W3133235685 hasConceptScore W3133235685C154945302 @default.
- W3133235685 hasConceptScore W3133235685C199978012 @default.
- W3133235685 hasConceptScore W3133235685C200601418 @default.
- W3133235685 hasConceptScore W3133235685C2775846686 @default.
- W3133235685 hasConceptScore W3133235685C2778449969 @default.
- W3133235685 hasConceptScore W3133235685C2780598303 @default.