Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133324903> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3133324903 endingPage "B119" @default.
- W3133324903 startingPage "B119" @default.
- W3133324903 abstract "The deep learning wavefront sensor (DLWFS) allows the direct estimate of Zernike coefficients of aberrated wavefronts from intensity images. The main drawback of this approach is related to the use of massive convolutional neural networks (CNNs) that are lengthy to train or estimate. In this paper, we explore several options to reduce both the training and estimation time. First, we develop a CNN that can be rapidly trained without compromising accuracy. Second, we explore the effects given smaller input image sizes and different amounts of Zernike modes to be estimated. Our simulation results demonstrate that the proposed network using images of either <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline> <mml:mn>8</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>8</mml:mn> </mml:math> , <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline> <mml:mn>16</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>16</mml:mn> </mml:math> , or <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline> <mml:mn>32</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>32</mml:mn> </mml:math> will dramatically reduce training time and even boost the estimation accuracy of Zernike coefficients. From our experimental results, we can confirm that a <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline> <mml:mn>16</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>16</mml:mn> </mml:math> DLWFS can be quickly trained and is able to estimate the first 12 Zernike coefficients–skipping piston, tip, and tilt–without sacrificing accuracy and significantly speeding up the prediction time to facilitate low-cost, real-time adaptive optics systems." @default.
- W3133324903 created "2021-03-01" @default.
- W3133324903 creator A5010211260 @default.
- W3133324903 creator A5038820437 @default.
- W3133324903 creator A5070394408 @default.
- W3133324903 date "2021-03-09" @default.
- W3133324903 modified "2023-10-03" @default.
- W3133324903 title "Boosting the deep learning wavefront sensor for real-time applications [Invited]" @default.
- W3133324903 cites W1600360405 @default.
- W3133324903 cites W1982951634 @default.
- W3133324903 cites W1995330649 @default.
- W3133324903 cites W2139940337 @default.
- W3133324903 cites W2790166445 @default.
- W3133324903 cites W2907716704 @default.
- W3133324903 cites W2919115771 @default.
- W3133324903 cites W2964231206 @default.
- W3133324903 cites W2966980643 @default.
- W3133324903 cites W2985820579 @default.
- W3133324903 cites W3044338123 @default.
- W3133324903 cites W3047527203 @default.
- W3133324903 cites W3112443563 @default.
- W3133324903 doi "https://doi.org/10.1364/ao.417574" @default.
- W3133324903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33798145" @default.
- W3133324903 hasPublicationYear "2021" @default.
- W3133324903 type Work @default.
- W3133324903 sameAs 3133324903 @default.
- W3133324903 citedByCount "3" @default.
- W3133324903 countsByYear W31333249032022 @default.
- W3133324903 countsByYear W31333249032023 @default.
- W3133324903 crossrefType "journal-article" @default.
- W3133324903 hasAuthorship W3133324903A5010211260 @default.
- W3133324903 hasAuthorship W3133324903A5038820437 @default.
- W3133324903 hasAuthorship W3133324903A5070394408 @default.
- W3133324903 hasConcept C11413529 @default.
- W3133324903 hasConcept C119857082 @default.
- W3133324903 hasConcept C120665830 @default.
- W3133324903 hasConcept C121332964 @default.
- W3133324903 hasConcept C154945302 @default.
- W3133324903 hasConcept C165699331 @default.
- W3133324903 hasConcept C41008148 @default.
- W3133324903 hasConcept C81363708 @default.
- W3133324903 hasConcept C92423082 @default.
- W3133324903 hasConceptScore W3133324903C11413529 @default.
- W3133324903 hasConceptScore W3133324903C119857082 @default.
- W3133324903 hasConceptScore W3133324903C120665830 @default.
- W3133324903 hasConceptScore W3133324903C121332964 @default.
- W3133324903 hasConceptScore W3133324903C154945302 @default.
- W3133324903 hasConceptScore W3133324903C165699331 @default.
- W3133324903 hasConceptScore W3133324903C41008148 @default.
- W3133324903 hasConceptScore W3133324903C81363708 @default.
- W3133324903 hasConceptScore W3133324903C92423082 @default.
- W3133324903 hasFunder F4320321535 @default.
- W3133324903 hasIssue "10" @default.
- W3133324903 hasLocation W31333249031 @default.
- W3133324903 hasOpenAccess W3133324903 @default.
- W3133324903 hasPrimaryLocation W31333249031 @default.
- W3133324903 hasRelatedWork W2084670405 @default.
- W3133324903 hasRelatedWork W2160632953 @default.
- W3133324903 hasRelatedWork W2239095950 @default.
- W3133324903 hasRelatedWork W2381061062 @default.
- W3133324903 hasRelatedWork W2512722105 @default.
- W3133324903 hasRelatedWork W2768496720 @default.
- W3133324903 hasRelatedWork W2907716704 @default.
- W3133324903 hasRelatedWork W3021430260 @default.
- W3133324903 hasRelatedWork W3027997911 @default.
- W3133324903 hasRelatedWork W4287776258 @default.
- W3133324903 hasVolume "60" @default.
- W3133324903 isParatext "false" @default.
- W3133324903 isRetracted "false" @default.
- W3133324903 magId "3133324903" @default.
- W3133324903 workType "article" @default.