Matches in SemOpenAlex for { <https://semopenalex.org/work/W3133344013> ?p ?o ?g. }
- W3133344013 abstract "Log-Structured Merge (LSM) tree based key-value stores are widely deployed in data centers. Due to its complex internal structures, appropriately configuring a modern key-value data store system, which can have more than 50 parameters with various hardware and system settings, is a highly challenging task. Currently, the industry still heavily relies on a traditional, experience-based, hand-tuning approach for performance tuning. Many simply adopt the default setting out of the box with no changes. Auto-tuning, as a self-adaptive solution, is thus highly appealing for achieving optimal or near-optimal performance in real-world deployment.In this paper, we quantitatively study and compare five optimization methods for auto-tuning the performance of LSM-tree based key-value stores. In order to evaluate the auto-tuning processes, we have conducted an exhaustive set of experiments over RocksDB, a representative LSM-tree data store. We have collected over 12,000 experimental records in 6 months, with about 2,000 software configurations of 6 parameters on different hardware setups. We have compared five representative algorithms, in terms of throughput, the 99th percentile tail latency, convergence time, real-time system throughput, and the iteration process, etc. We find that multi-objective optimization (MOO) methods can achieve a good balance among multiple targets, which satisfies the unique needs of key-value services. The more specific Quality of Service (QoS) requirements users can provide, the better performance these algorithms can achieve. We also find that the number of concurrent threads and the write buffer size are the two most impactful parameters determining the throughput and the 99th percentile tail latency across different hardware and workloads. Finally, we provide system-level explanations for the auto-tuning results and also discuss the associated implications for system designers and practitioners. We hope this work will pave the way towards a practical, high-speed auto-tuning solution for key-value data store systems." @default.
- W3133344013 created "2021-03-01" @default.
- W3133344013 creator A5060073900 @default.
- W3133344013 creator A5074548573 @default.
- W3133344013 date "2020-11-01" @default.
- W3133344013 modified "2023-09-24" @default.
- W3133344013 title "Kill Two Birds with One Stone: Auto-tuning RocksDB for High Bandwidth and Low Latency" @default.
- W3133344013 cites W149681167 @default.
- W3133344013 cites W1595498733 @default.
- W3133344013 cites W1834532152 @default.
- W3133344013 cites W1930996999 @default.
- W3133344013 cites W1965689831 @default.
- W3133344013 cites W1972152533 @default.
- W3133344013 cites W1974964101 @default.
- W3133344013 cites W1980432290 @default.
- W3133344013 cites W1980956836 @default.
- W3133344013 cites W1982063824 @default.
- W3133344013 cites W1985229168 @default.
- W3133344013 cites W1987941219 @default.
- W3133344013 cites W1988333446 @default.
- W3133344013 cites W1997188340 @default.
- W3133344013 cites W1998556186 @default.
- W3133344013 cites W2008684356 @default.
- W3133344013 cites W2025911687 @default.
- W3133344013 cites W2038420231 @default.
- W3133344013 cites W2051821221 @default.
- W3133344013 cites W2055991985 @default.
- W3133344013 cites W2062073399 @default.
- W3133344013 cites W2068739275 @default.
- W3133344013 cites W2099997420 @default.
- W3133344013 cites W2104017154 @default.
- W3133344013 cites W2106436364 @default.
- W3133344013 cites W2112474496 @default.
- W3133344013 cites W2126105956 @default.
- W3133344013 cites W2129010304 @default.
- W3133344013 cites W2131960077 @default.
- W3133344013 cites W2136461733 @default.
- W3133344013 cites W2154809801 @default.
- W3133344013 cites W2156352928 @default.
- W3133344013 cites W2188839219 @default.
- W3133344013 cites W2290228289 @default.
- W3133344013 cites W2334906466 @default.
- W3133344013 cites W2338076123 @default.
- W3133344013 cites W2480423172 @default.
- W3133344013 cites W2573137292 @default.
- W3133344013 cites W2604856537 @default.
- W3133344013 cites W2613206411 @default.
- W3133344013 cites W2752549774 @default.
- W3133344013 cites W2767897789 @default.
- W3133344013 cites W2774492845 @default.
- W3133344013 cites W2799002609 @default.
- W3133344013 cites W2885833634 @default.
- W3133344013 cites W2887247582 @default.
- W3133344013 cites W2887761271 @default.
- W3133344013 cites W2899818160 @default.
- W3133344013 cites W2994551303 @default.
- W3133344013 doi "https://doi.org/10.1109/icdcs47774.2020.00113" @default.
- W3133344013 hasPublicationYear "2020" @default.
- W3133344013 type Work @default.
- W3133344013 sameAs 3133344013 @default.
- W3133344013 citedByCount "0" @default.
- W3133344013 crossrefType "proceedings-article" @default.
- W3133344013 hasAuthorship W3133344013A5060073900 @default.
- W3133344013 hasAuthorship W3133344013A5074548573 @default.
- W3133344013 hasConcept C105339364 @default.
- W3133344013 hasConcept C111919701 @default.
- W3133344013 hasConcept C120314980 @default.
- W3133344013 hasConcept C157764524 @default.
- W3133344013 hasConcept C173608175 @default.
- W3133344013 hasConcept C197129107 @default.
- W3133344013 hasConcept C26517878 @default.
- W3133344013 hasConcept C2777138346 @default.
- W3133344013 hasConcept C31258907 @default.
- W3133344013 hasConcept C41008148 @default.
- W3133344013 hasConcept C5119721 @default.
- W3133344013 hasConcept C555944384 @default.
- W3133344013 hasConcept C76155785 @default.
- W3133344013 hasConcept C79403827 @default.
- W3133344013 hasConcept C82876162 @default.
- W3133344013 hasConceptScore W3133344013C105339364 @default.
- W3133344013 hasConceptScore W3133344013C111919701 @default.
- W3133344013 hasConceptScore W3133344013C120314980 @default.
- W3133344013 hasConceptScore W3133344013C157764524 @default.
- W3133344013 hasConceptScore W3133344013C173608175 @default.
- W3133344013 hasConceptScore W3133344013C197129107 @default.
- W3133344013 hasConceptScore W3133344013C26517878 @default.
- W3133344013 hasConceptScore W3133344013C2777138346 @default.
- W3133344013 hasConceptScore W3133344013C31258907 @default.
- W3133344013 hasConceptScore W3133344013C41008148 @default.
- W3133344013 hasConceptScore W3133344013C5119721 @default.
- W3133344013 hasConceptScore W3133344013C555944384 @default.
- W3133344013 hasConceptScore W3133344013C76155785 @default.
- W3133344013 hasConceptScore W3133344013C79403827 @default.
- W3133344013 hasConceptScore W3133344013C82876162 @default.
- W3133344013 hasFunder F4320306076 @default.
- W3133344013 hasLocation W31333440131 @default.
- W3133344013 hasOpenAccess W3133344013 @default.
- W3133344013 hasPrimaryLocation W31333440131 @default.
- W3133344013 hasRelatedWork W1056348 @default.
- W3133344013 hasRelatedWork W12225285 @default.